YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mixing and Chemical Ozone Loss during and after the Antarctic Polar Vortex Major Warming in September 2002

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 003::page 848
    Author:
    Konopka, Paul
    ,
    Grooß, Jens-Uwe
    ,
    Hoppel, Karl W.
    ,
    Steinhorst, Hildegard-Maria
    ,
    Müller, Rolf
    DOI: 10.1175/JAS-3329.1
    Publisher: American Meteorological Society
    Abstract: The 3D version of the Chemical Lagrangian Model of the Stratosphere (CLAMS) is used to study the transport of CH4 and O3 in the Antarctic stratosphere between 1 September and 30 November 2002, that is, over the time period when unprecedented major stratospheric warming in late September split the polar vortex into two parts. The isentropic and cross-isentropic velocities in CLAMS are derived from ECMWF winds and heating/cooling rates calculated with a radiation module. The irreversible part of transport, that is, mixing, is driven by the local horizontal strain and vertical shear rates with mixing parameters deduced from in situ observations. The CH4 distribution after the vortex split shows a completely different behavior above and below 600 K. Above this potential temperature level, until the beginning of November, a significant part of vortex air is transported into the midlatitudes up to 40°S. The lifetime of the vortex remnants formed after the vortex split decreases with the altitude with values of about 3 and 6 weeks at 900 and 700 K, respectively. Despite this enormous dynamical disturbance of the vortex, the intact part between 400 and 600 K that ?survived? the major warming was strongly isolated from the extravortex air until the end of November. According to CLAMS simulations, the air masses within this part of the vortex did not experience any significant dilution with the midlatitude air. By transporting ozone in CLAMS as a passive tracer, the chemical ozone loss was estimated from the difference between the observed [Polar Ozone and Aerosol Measurement III (POAM III) and Halogen Occultation Experiment (HALOE)] and simulated ozone profiles. Starting from 1 September, up to 2.0 ppmv O3 around 480 K and about 70 Dobson units between 450 and 550 K were destroyed until the vortex was split. After the major warming, no additional ozone loss can be derived, but in the intact vortex part between 450 and 550 K, the accumulated ozone loss was ?frozen in? until the end of November.
    • Download: (860.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mixing and Chemical Ozone Loss during and after the Antarctic Polar Vortex Major Warming in September 2002

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217864
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKonopka, Paul
    contributor authorGrooß, Jens-Uwe
    contributor authorHoppel, Karl W.
    contributor authorSteinhorst, Hildegard-Maria
    contributor authorMüller, Rolf
    date accessioned2017-06-09T16:51:54Z
    date available2017-06-09T16:51:54Z
    date copyright2005/03/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75519.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217864
    description abstractThe 3D version of the Chemical Lagrangian Model of the Stratosphere (CLAMS) is used to study the transport of CH4 and O3 in the Antarctic stratosphere between 1 September and 30 November 2002, that is, over the time period when unprecedented major stratospheric warming in late September split the polar vortex into two parts. The isentropic and cross-isentropic velocities in CLAMS are derived from ECMWF winds and heating/cooling rates calculated with a radiation module. The irreversible part of transport, that is, mixing, is driven by the local horizontal strain and vertical shear rates with mixing parameters deduced from in situ observations. The CH4 distribution after the vortex split shows a completely different behavior above and below 600 K. Above this potential temperature level, until the beginning of November, a significant part of vortex air is transported into the midlatitudes up to 40°S. The lifetime of the vortex remnants formed after the vortex split decreases with the altitude with values of about 3 and 6 weeks at 900 and 700 K, respectively. Despite this enormous dynamical disturbance of the vortex, the intact part between 400 and 600 K that ?survived? the major warming was strongly isolated from the extravortex air until the end of November. According to CLAMS simulations, the air masses within this part of the vortex did not experience any significant dilution with the midlatitude air. By transporting ozone in CLAMS as a passive tracer, the chemical ozone loss was estimated from the difference between the observed [Polar Ozone and Aerosol Measurement III (POAM III) and Halogen Occultation Experiment (HALOE)] and simulated ozone profiles. Starting from 1 September, up to 2.0 ppmv O3 around 480 K and about 70 Dobson units between 450 and 550 K were destroyed until the vortex was split. After the major warming, no additional ozone loss can be derived, but in the intact vortex part between 450 and 550 K, the accumulated ozone loss was ?frozen in? until the end of November.
    publisherAmerican Meteorological Society
    titleMixing and Chemical Ozone Loss during and after the Antarctic Polar Vortex Major Warming in September 2002
    typeJournal Paper
    journal volume62
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-3329.1
    journal fristpage848
    journal lastpage859
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian