YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solar and QBO Influences on the Timing of Stratospheric Sudden Warmings

    Source: Journal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 023::page 2777
    Author:
    Gray, Lesley J.
    ,
    Crooks, Simon
    ,
    Pascoe, Charlotte
    ,
    Sparrow, Sarah
    ,
    Palmer, Michael
    DOI: 10.1175/JAS-3297.1
    Publisher: American Meteorological Society
    Abstract: The interaction of the 11-yr solar cycle (SC) and the quasi-biennial oscillation (QBO) and their influence on the Northern Hemisphere (NH) polar vortex are studied using idealized model experiments and ECMWF Re-Analysis (ERA-40). In the model experiments, the sensitivity of the NH polar vortex to imposed easterlies at equatorial/subtropical latitudes over various height ranges is tested to explore the possible influence from zonal wind anomalies associated with the QBO and the 11-yr SC in those regions. The experiments show that the timing of the modeled stratospheric sudden warmings (SSWs) is sensitive to the imposed easterlies at the equator/subtropics. When easterlies are imposed in the equatorial or subtropical upper stratosphere, the onset of the SSWs is earlier. A mechanism is proposed in which zonal wind anomalies in the equatorial/subtropical upper stratosphere associated with the QBO and 11-yr SC either reinforce each other or cancel each other out. When they reinforce, as in Smin?QBO-east (Smin/E) and Smax?QBO-west (Smax/W), it is suggested that the resulting anomaly is large enough to influence the development of the Aleutian high and hence the time of onset of the SSWs. Although highly speculative, this mechanism may help to understand the puzzling observations that major warmings often occur in Smax/W years even though there is no strong waveguide provided by the QBO winds in the lower equatorial stratosphere. The ERA-40 data are used to investigate the QBO and solar signals and to determine whether the observations support the proposed mechanism. Composites of ERA-40 zonally averaged zonal winds based on the QBO (E/W), the SC (min/max), and both (Smin/E, Smin/W, Smax/E, Smax/W) are examined, with emphasis on the Northern Hemisphere winter vortex evolution. The major findings are that QBO/E years are more disturbed than QBO/W years, primarily during early winter. Sudden warmings in Smax years tend to occur later than in Smin years. Midwinter warmings are more likely during Smin/E and Smax/W years, although the latter result is only barely statistically significant at the 75% level. The data show some support for the proposed mechanism, but many more years are required before it can be fully tested.
    • Download: (3.754Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solar and QBO Influences on the Timing of Stratospheric Sudden Warmings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217828
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGray, Lesley J.
    contributor authorCrooks, Simon
    contributor authorPascoe, Charlotte
    contributor authorSparrow, Sarah
    contributor authorPalmer, Michael
    date accessioned2017-06-09T16:51:49Z
    date available2017-06-09T16:51:49Z
    date copyright2004/12/01
    date issued2004
    identifier issn0022-4928
    identifier otherams-75487.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217828
    description abstractThe interaction of the 11-yr solar cycle (SC) and the quasi-biennial oscillation (QBO) and their influence on the Northern Hemisphere (NH) polar vortex are studied using idealized model experiments and ECMWF Re-Analysis (ERA-40). In the model experiments, the sensitivity of the NH polar vortex to imposed easterlies at equatorial/subtropical latitudes over various height ranges is tested to explore the possible influence from zonal wind anomalies associated with the QBO and the 11-yr SC in those regions. The experiments show that the timing of the modeled stratospheric sudden warmings (SSWs) is sensitive to the imposed easterlies at the equator/subtropics. When easterlies are imposed in the equatorial or subtropical upper stratosphere, the onset of the SSWs is earlier. A mechanism is proposed in which zonal wind anomalies in the equatorial/subtropical upper stratosphere associated with the QBO and 11-yr SC either reinforce each other or cancel each other out. When they reinforce, as in Smin?QBO-east (Smin/E) and Smax?QBO-west (Smax/W), it is suggested that the resulting anomaly is large enough to influence the development of the Aleutian high and hence the time of onset of the SSWs. Although highly speculative, this mechanism may help to understand the puzzling observations that major warmings often occur in Smax/W years even though there is no strong waveguide provided by the QBO winds in the lower equatorial stratosphere. The ERA-40 data are used to investigate the QBO and solar signals and to determine whether the observations support the proposed mechanism. Composites of ERA-40 zonally averaged zonal winds based on the QBO (E/W), the SC (min/max), and both (Smin/E, Smin/W, Smax/E, Smax/W) are examined, with emphasis on the Northern Hemisphere winter vortex evolution. The major findings are that QBO/E years are more disturbed than QBO/W years, primarily during early winter. Sudden warmings in Smax years tend to occur later than in Smin years. Midwinter warmings are more likely during Smin/E and Smax/W years, although the latter result is only barely statistically significant at the 75% level. The data show some support for the proposed mechanism, but many more years are required before it can be fully tested.
    publisherAmerican Meteorological Society
    titleSolar and QBO Influences on the Timing of Stratospheric Sudden Warmings
    typeJournal Paper
    journal volume61
    journal issue23
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS-3297.1
    journal fristpage2777
    journal lastpage2796
    treeJournal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian