YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics

    Source: Journal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 005::page 1311
    Author:
    Chagnon, Jeffrey M.
    ,
    Bannon, Peter R.
    DOI: 10.1175/JAS3283.1
    Publisher: American Meteorological Society
    Abstract: The adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered ?external? to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems. For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode?the Lamb mode? containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection. The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery?all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward. A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established. A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia?gravity waves oscillating about a nontrivial hydrostatic and geostrophic state. This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.
    • Download: (540.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217814
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChagnon, Jeffrey M.
    contributor authorBannon, Peter R.
    date accessioned2017-06-09T16:51:47Z
    date available2017-06-09T16:51:47Z
    date copyright2005/05/01
    date issued2005
    identifier issn0022-4928
    identifier otherams-75474.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217814
    description abstractThe adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered ?external? to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems. For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode?the Lamb mode? containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection. The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery?all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward. A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established. A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia?gravity waves oscillating about a nontrivial hydrostatic and geostrophic state. This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.
    publisherAmerican Meteorological Society
    titleWave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics
    typeJournal Paper
    journal volume62
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/JAS3283.1
    journal fristpage1311
    journal lastpage1329
    treeJournal of the Atmospheric Sciences:;2005:;Volume( 062 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian