Show simple item record

contributor authorBukovčić, Petar
contributor authorZrnić, Dušan
contributor authorZhang, Guifu
date accessioned2017-06-09T16:51:36Z
date available2017-06-09T16:51:36Z
date copyright2017/05/01
date issued2017
identifier issn1558-8424
identifier otherams-75418.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217752
description abstractbservations and analysis of an ice?liquid phase precipitation event, collected with an S-band polarimetric KOUN radar and a two-dimensional video disdrometer (2DVD) in central Oklahoma on 20 January 2007, are presented. Using the disdrometer measurements, precipitation is classified either as ice pellets or rain/freezing rain. The disdrometer observations showed fast-falling and slow-falling particles of similar size. The vast majority (>99%) were fast falling with observed velocities close to those of raindrops with similar sizes. In contrast to the smaller particles (<1 mm in diameter), bigger ice pellets (>1.5 mm) were relatively easy to distinguish because their shapes differ from the raindrops. The ice pellets were challenging to detect by looking at conventional polarimetric radar data because of the localized and patchy nature of the ice phase and their occurrence close to the ground. Previously published findings referred to cases in which ice pellet areas were centered on the radar location and showed a ringlike structure of enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ?hv and horizontal reflectivity ZH in PPI images. In this study, a new, unconventional way of looking at polarimetric radar data is introduced: slanted vertical profiles (SVPs) at low (0°?1°) radar elevations. From the analysis of the localized and patchy structures using SVPs, the polarimetric refreezing signature, reflected in local enhancement in ZDR and reduction in ZH and ?hv, became much more evident. Model simulations of sequential drop freezing using Marshall?Palmer DSDs along with the observations suggest that preferential freezing of small drops may be responsible for the refreezing polarimetric signature, as suggested in previous studies.
publisherAmerican Meteorological Society
titleWinter Precipitation Liquid–Ice Phase Transitions Revealed with Polarimetric Radar and 2DVD Observations in Central Oklahoma
typeJournal Paper
journal volume56
journal issue5
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/JAMC-D-16-0239.1
journal fristpage1345
journal lastpage1363
treeJournal of Applied Meteorology and Climatology:;2017:;volume( 056 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record