Show simple item record

contributor authorZhang, Yuying
contributor authorMace, Gerald G.
date accessioned2017-06-09T16:48:03Z
date available2017-06-09T16:48:03Z
date copyright2006/12/01
date issued2006
identifier issn1558-8424
identifier otherams-74360.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216576
description abstractAlgorithms are developed to convert data streams from multiple airborne and spaceborne remote sensors into layer-averaged cirrus bulk microphysical properties. Radiometers such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) observe narrowband spectral radiances, and active remote sensors such as the lidar on the Cloud?Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the millimeter radar on CloudSat will provide vertical profiles of attenuated optical backscatter and radar reflectivity. Equivalent airborne remote sensors are also routinely flown on the NASA WB-57F and ER-2 aircraft. Algorithms designed to retrieve cirrus microphysical properties from remote sensor data must be able to handle the natural variability of cirrus that can range from optically thick layers that cause lidar attenuation to tenuous layers that are not detected by the cloud radar. An approach that is adopted here is to develop an algorithm suite that has internal consistency in its formulation and assumptions. The algorithm suite is developed around a forward model of the observations and is inverted for layer-mean cloud properties using a variational technique. The theoretical uncertainty in the retrieved ice water path retrieval is 40%?50%, and the uncertainty in the layer-mean particle size retrieval ranges from 50% to 90%. Two case studies from the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) field campaign as well as ground-based cases from the Atmospheric Radiation Measurement Program (ARM) are used to show the efficacy and error characteristics of the algorithms.
publisherAmerican Meteorological Society
titleRetrieval of Cirrus Microphysical Properties with a Suite of Algorithms for Airborne and Spaceborne Lidar, Radar, and Radiometer Data
typeJournal Paper
journal volume45
journal issue12
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/JAM2427.1
journal fristpage1665
journal lastpage1689
treeJournal of Applied Meteorology and Climatology:;2006:;volume( 045 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record