YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Twenty-Four-Hour Observations of the Marine Boundary Layer Using Shipborne NOAA High-Resolution Doppler Lidar

    Source: Journal of Applied Meteorology:;2005:;volume( 044 ):;issue: 011::page 1723
    Author:
    Wulfmeyer, Volker
    ,
    Janjić, Tijana
    DOI: 10.1175/JAM2296.1
    Publisher: American Meteorological Society
    Abstract: Shipborne observations obtained with the NOAA high-resolution Doppler lidar (HRDL) during the 1999 Nauru (Nauru99) campaign were used to study the structure of the marine boundary layer (MBL) in the tropical Pacific Ocean. During a day with weak mesoscale activity, diurnal variability of the height of the convective MBL was observed using HRDL backscatter data. The observed diurnal variation in the MBL height had an amplitude of about 250 m. Relations between the MBL height and in situ measurements of sea surface temperature as well as latent and sensible heat fluxes were examined. Good correlation was found with the sea surface temperature. The correlation with the latent heat flux was lower, and practically no correlation between the MBL height and the sensible heat and buoyancy fluxes could be detected. Horizontal wind profiles were measured using a velocity?azimuth display scan of HRDL velocity data. Strong wind shear at the top of the MBL was observed in most cases. Comparison of these results with GPS radiosonde data shows discrepancies in the wind intensity and direction, which may be due to different observation times and locations as well as due to multipath effects at the ship?s platform. Vertical wind profiles corrected for ship?s motion were used to derive vertical velocity variance and skewness profiles. Motion compensation had a significant effect on their shape. Normalized by the convective velocity scale and by the top of the mixed layer zi, the variance varied between 0.45 and 0.65 at 0.4z/zi and decreased to 0.2 at 1.0z/zi. The skewness ranged between 0.3 and 0.8 in the MBL and showed in almost all cases a maximum between 1.0z/zi and 1.1z/zi. These profiles revealed the existence of another turbulent layer above the MBL, which was probably driven by wind shear and cloud condensation processes.
    • Download: (3.173Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Twenty-Four-Hour Observations of the Marine Boundary Layer Using Shipborne NOAA High-Resolution Doppler Lidar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216432
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorWulfmeyer, Volker
    contributor authorJanjić, Tijana
    date accessioned2017-06-09T16:47:39Z
    date available2017-06-09T16:47:39Z
    date copyright2005/11/01
    date issued2005
    identifier issn0894-8763
    identifier otherams-74230.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216432
    description abstractShipborne observations obtained with the NOAA high-resolution Doppler lidar (HRDL) during the 1999 Nauru (Nauru99) campaign were used to study the structure of the marine boundary layer (MBL) in the tropical Pacific Ocean. During a day with weak mesoscale activity, diurnal variability of the height of the convective MBL was observed using HRDL backscatter data. The observed diurnal variation in the MBL height had an amplitude of about 250 m. Relations between the MBL height and in situ measurements of sea surface temperature as well as latent and sensible heat fluxes were examined. Good correlation was found with the sea surface temperature. The correlation with the latent heat flux was lower, and practically no correlation between the MBL height and the sensible heat and buoyancy fluxes could be detected. Horizontal wind profiles were measured using a velocity?azimuth display scan of HRDL velocity data. Strong wind shear at the top of the MBL was observed in most cases. Comparison of these results with GPS radiosonde data shows discrepancies in the wind intensity and direction, which may be due to different observation times and locations as well as due to multipath effects at the ship?s platform. Vertical wind profiles corrected for ship?s motion were used to derive vertical velocity variance and skewness profiles. Motion compensation had a significant effect on their shape. Normalized by the convective velocity scale and by the top of the mixed layer zi, the variance varied between 0.45 and 0.65 at 0.4z/zi and decreased to 0.2 at 1.0z/zi. The skewness ranged between 0.3 and 0.8 in the MBL and showed in almost all cases a maximum between 1.0z/zi and 1.1z/zi. These profiles revealed the existence of another turbulent layer above the MBL, which was probably driven by wind shear and cloud condensation processes.
    publisherAmerican Meteorological Society
    titleTwenty-Four-Hour Observations of the Marine Boundary Layer Using Shipborne NOAA High-Resolution Doppler Lidar
    typeJournal Paper
    journal volume44
    journal issue11
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2296.1
    journal fristpage1723
    journal lastpage1744
    treeJournal of Applied Meteorology:;2005:;volume( 044 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian