YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions

    Source: Journal of Applied Meteorology:;2005:;volume( 044 ):;issue: 008::page 1243
    Author:
    Seto, Shinta
    ,
    Takahashi, Nobuhiro
    ,
    Iguchi, Toshio
    DOI: 10.1175/JAM2263.1
    Publisher: American Meteorological Society
    Abstract: One of the goals of the Global Precipitation Measurement project, the successor to the Tropical Rainfall Measuring Mission (TRMM), is to produce a 3-hourly global rainfall map using several spaceborne microwave radiometers. It is important, although often difficult, to classify radiometer observations over land as either ?rain? or ?no rain? because background land surface conditions change significantly with time and location. In this study, a no-rain brightness temperature database was created to infer land surface conditions using simultaneous observations by TRMM Microwave Imager (TMI) and precipitation radar (PR) with a resolution of 1 month and 1° latitude ? 1° longitude. This paper proposes new rain/no-rain classification (RNC) methods that use the database to determine the background brightness temperature. The proposed RNC methods and the RNC method developed for the Goddard profiling algorithm (GPROF; the standard rain-rate retrieval algorithm for TMI) are applied to all TMI observations for the entire year of 2000, and the results are evaluated against the RNC made by PR as the ?truth.? The first method (M1) simply uses the average brightness temperature at 85-GHz vertical polarization [denoted as TB (85 V)] under no-rain conditions as the background brightness temperature at 85-GHz vertical polarization [denoted as TBe (85 V)]. The second method (M2) uses a regression equation between TB (85 V) and TB (22 V) under no-rain conditions from the database. Here, TBe (85 V) is calculated by substituting the observed TB (22 V) into the regression equation. The ratio of accurate rain detection by GPROF to all rain occurrences detected by PR was 59%. This ratio was 57% for M1 and 63% for M2. The ratio with the weight of the rain rate was 81% for M1 and 86% for M2; it was 80% for GPROF. These comparisons were made by setting a threshold using a constant coefficient k0 to make the ratio of false rain detection to all no-rain occurrences detected by PR almost the same (approximately 0.85%) for all three methods. Further comparisons among the methods are made, and the reasons for the differences are investigated herein.
    • Download: (1.230Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216396
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorSeto, Shinta
    contributor authorTakahashi, Nobuhiro
    contributor authorIguchi, Toshio
    date accessioned2017-06-09T16:47:35Z
    date available2017-06-09T16:47:35Z
    date copyright2005/08/01
    date issued2005
    identifier issn0894-8763
    identifier otherams-74198.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216396
    description abstractOne of the goals of the Global Precipitation Measurement project, the successor to the Tropical Rainfall Measuring Mission (TRMM), is to produce a 3-hourly global rainfall map using several spaceborne microwave radiometers. It is important, although often difficult, to classify radiometer observations over land as either ?rain? or ?no rain? because background land surface conditions change significantly with time and location. In this study, a no-rain brightness temperature database was created to infer land surface conditions using simultaneous observations by TRMM Microwave Imager (TMI) and precipitation radar (PR) with a resolution of 1 month and 1° latitude ? 1° longitude. This paper proposes new rain/no-rain classification (RNC) methods that use the database to determine the background brightness temperature. The proposed RNC methods and the RNC method developed for the Goddard profiling algorithm (GPROF; the standard rain-rate retrieval algorithm for TMI) are applied to all TMI observations for the entire year of 2000, and the results are evaluated against the RNC made by PR as the ?truth.? The first method (M1) simply uses the average brightness temperature at 85-GHz vertical polarization [denoted as TB (85 V)] under no-rain conditions as the background brightness temperature at 85-GHz vertical polarization [denoted as TBe (85 V)]. The second method (M2) uses a regression equation between TB (85 V) and TB (22 V) under no-rain conditions from the database. Here, TBe (85 V) is calculated by substituting the observed TB (22 V) into the regression equation. The ratio of accurate rain detection by GPROF to all rain occurrences detected by PR was 59%. This ratio was 57% for M1 and 63% for M2. The ratio with the weight of the rain rate was 81% for M1 and 86% for M2; it was 80% for GPROF. These comparisons were made by setting a threshold using a constant coefficient k0 to make the ratio of false rain detection to all no-rain occurrences detected by PR almost the same (approximately 0.85%) for all three methods. Further comparisons among the methods are made, and the reasons for the differences are investigated herein.
    publisherAmerican Meteorological Society
    titleRain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions
    typeJournal Paper
    journal volume44
    journal issue8
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2263.1
    journal fristpage1243
    journal lastpage1259
    treeJournal of Applied Meteorology:;2005:;volume( 044 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian