YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case

    Source: Journal of Applied Meteorology:;2005:;volume( 044 ):;issue: 006::page 768
    Author:
    Xiao, Qingnong
    ,
    Kuo, Ying-Hwa
    ,
    Sun, Juanzhen
    ,
    Lee, Wen-Chau
    ,
    Lim, Eunha
    ,
    Guo, Yong-Run
    ,
    Barker, Dale M.
    DOI: 10.1175/JAM2248.1
    Publisher: American Meteorological Society
    Abstract: In this paper, the impact of Doppler radar radial velocity on the prediction of a heavy rainfall event is examined. The three-dimensional variational data assimilation (3DVAR) system for use with the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) is further developed to enable the assimilation of radial velocity observations. Doppler velocities from the Korean Jindo radar are assimilated into MM5 using the 3DVAR system for a heavy rainfall case that occurred on 10 June 2002. The results show that the assimilation of Doppler velocities has a positive impact on the short-range prediction of heavy rainfall. The dynamic balance between atmospheric wind and thermodynamic fields, based on the Richardson equation, is introduced to the 3DVAR system. Vertical velocity (w) increments are included in the 3DVAR system to enable the assimilation of the vertical velocity component of the Doppler radial velocity observation. The forecast of the hydrometeor variables of cloud water (qc) and rainwater (qr) is used in the 3DVAR background fields. The observation operator for Doppler radial velocity is developed and implemented within the 3DVAR system. A series of experiments, assimilating the Korean Jindo radar data for the 10 June 2002 heavy rainfall case, indicates that the scheme for Doppler velocity assimilation is stable and robust in a cycling mode making use of high-frequency radar data. The 3DVAR with assimilation of Doppler radial velocities is shown to improve the prediction of the rainband movement and intensity change. As a result, an improved skill for the short-range heavy rainfall forecast is obtained. The forecasts of other quantities, for example, winds, are also improved. Continuous assimilation with 3-h update cycles is important in producing an improved heavy rainfall forecast. Assimilation of Doppler radar radial velocities using the 3DVAR background fields from a cycling procedure produces skillful rainfall forecasts when verified against observations.
    • Download: (3.930Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216380
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorXiao, Qingnong
    contributor authorKuo, Ying-Hwa
    contributor authorSun, Juanzhen
    contributor authorLee, Wen-Chau
    contributor authorLim, Eunha
    contributor authorGuo, Yong-Run
    contributor authorBarker, Dale M.
    date accessioned2017-06-09T16:47:33Z
    date available2017-06-09T16:47:33Z
    date copyright2005/06/01
    date issued2005
    identifier issn0894-8763
    identifier otherams-74183.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216380
    description abstractIn this paper, the impact of Doppler radar radial velocity on the prediction of a heavy rainfall event is examined. The three-dimensional variational data assimilation (3DVAR) system for use with the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) is further developed to enable the assimilation of radial velocity observations. Doppler velocities from the Korean Jindo radar are assimilated into MM5 using the 3DVAR system for a heavy rainfall case that occurred on 10 June 2002. The results show that the assimilation of Doppler velocities has a positive impact on the short-range prediction of heavy rainfall. The dynamic balance between atmospheric wind and thermodynamic fields, based on the Richardson equation, is introduced to the 3DVAR system. Vertical velocity (w) increments are included in the 3DVAR system to enable the assimilation of the vertical velocity component of the Doppler radial velocity observation. The forecast of the hydrometeor variables of cloud water (qc) and rainwater (qr) is used in the 3DVAR background fields. The observation operator for Doppler radial velocity is developed and implemented within the 3DVAR system. A series of experiments, assimilating the Korean Jindo radar data for the 10 June 2002 heavy rainfall case, indicates that the scheme for Doppler velocity assimilation is stable and robust in a cycling mode making use of high-frequency radar data. The 3DVAR with assimilation of Doppler radial velocities is shown to improve the prediction of the rainband movement and intensity change. As a result, an improved skill for the short-range heavy rainfall forecast is obtained. The forecasts of other quantities, for example, winds, are also improved. Continuous assimilation with 3-h update cycles is important in producing an improved heavy rainfall forecast. Assimilation of Doppler radar radial velocities using the 3DVAR background fields from a cycling procedure produces skillful rainfall forecasts when verified against observations.
    publisherAmerican Meteorological Society
    titleAssimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case
    typeJournal Paper
    journal volume44
    journal issue6
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2248.1
    journal fristpage768
    journal lastpage788
    treeJournal of Applied Meteorology:;2005:;volume( 044 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian