YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Differences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Dependence on Storm Height

    Source: Journal of Applied Meteorology:;2005:;volume( 044 ):;issue: 003::page 367
    Author:
    Furuzawa, Fumie A.
    ,
    Nakamura, Kenji
    DOI: 10.1175/JAM-2200.1
    Publisher: American Meteorological Society
    Abstract: It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (<5 km), the TMI-RR is smaller than the PR-RR; when it is high (>8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a low storm height predominates in winter or from 0600 to 1500 LT, and convective rain occurs frequently from 1200 to 2100 LT. Result 1 can be explained by results 2 and 3. It can be concluded that the TMI underestimates rain with low storm height over land because of the weakness of the TMI algorithm, especially for convective rain. On the other hand, it is speculated that TMI overestimates rain with high storm height because of the effect of anvil rain with low brightness temperatures at high frequencies without rain near the surface, and because of the effect of evaporation or tilting, which is indicated by a PR profile and does not appear in the TMI profile. Moreover, it was found that the PR rain for the cases with no TMI rain amounted to about 10%?30% of the total but that the TMI rain for the cases with no PR rain accounted for only a few percent of the TMI rain. This result can be explained by the difficulty of detecting shallow rain with the TMI.
    • Download: (242.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Differences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Dependence on Storm Height

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216328
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorFuruzawa, Fumie A.
    contributor authorNakamura, Kenji
    date accessioned2017-06-09T16:47:26Z
    date available2017-06-09T16:47:26Z
    date copyright2005/03/01
    date issued2005
    identifier issn0894-8763
    identifier otherams-74136.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216328
    description abstractIt is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (<5 km), the TMI-RR is smaller than the PR-RR; when it is high (>8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a low storm height predominates in winter or from 0600 to 1500 LT, and convective rain occurs frequently from 1200 to 2100 LT. Result 1 can be explained by results 2 and 3. It can be concluded that the TMI underestimates rain with low storm height over land because of the weakness of the TMI algorithm, especially for convective rain. On the other hand, it is speculated that TMI overestimates rain with high storm height because of the effect of anvil rain with low brightness temperatures at high frequencies without rain near the surface, and because of the effect of evaporation or tilting, which is indicated by a PR profile and does not appear in the TMI profile. Moreover, it was found that the PR rain for the cases with no TMI rain amounted to about 10%?30% of the total but that the TMI rain for the cases with no PR rain accounted for only a few percent of the TMI rain. This result can be explained by the difficulty of detecting shallow rain with the TMI.
    publisherAmerican Meteorological Society
    titleDifferences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Dependence on Storm Height
    typeJournal Paper
    journal volume44
    journal issue3
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM-2200.1
    journal fristpage367
    journal lastpage383
    treeJournal of Applied Meteorology:;2005:;volume( 044 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian