YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm

    Source: Journal of Applied Meteorology:;2005:;volume( 044 ):;issue: 002::page 189
    Author:
    Dinku, Tufa
    ,
    Anagnostou, Emmanouil N.
    DOI: 10.1175/JAM2186.1
    Publisher: American Meteorological Society
    Abstract: The Tropical Rainfall Measuring Mission (TRMM) satellite carries a combination of active [precipitation radar (PR)] and multichannel passive microwave [the TRMM Microwave Imager (TMI)] sensors, which advance our ability to estimate rainfall over land. Rain retrieval from the TRMM PR is associated with an unprecedented accuracy and resolution but is limited in terms of sampling because of the narrow PR swath width (215 km). TMI provides wider coverage (760 km), but its observations are associated with a more complex relationship to precipitation in comparison with PR (especially over land). The PR rain estimates are used here for calibrating an overland TMI rain algorithm. The algorithm consists of 1) multichannel-based rain screening and convective/stratiform (C/S) classification schemes, and 2) nonlinear (linear) regressions for the rain-rate retrieval of stratiform (convective) rain regimes. This study examines regional differences in the algorithm performance. Four geographic regions consisting of central Africa (AFC), the Amazon (AMZ), the U.S. southern Plains (USA), and the Ganges?Brahmaputra?Meghna River basin (GBM) in south Asia are selected. Data from three summer months of 2000 and 2001 are used for calibration; validation is done using summer 2002 data. The current algorithm is also compared with the latest [version 6 (V6)] TRMM 2A12 product in terms of rain detection, and rain-rate retrieval error statistics on the basis of PR reference rainfall. The performance of the algorithm is different for the different regions. For instance, the reduction in random error (relative to 2A12 V6) is about 24%, 36%, 57%, and 165% for USA, AFC, AMZ, and GBM, respectively. However, significant difference between global (the four regions combined) and regional calibration is observed only for the GBM region.
    • Download: (883.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216313
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorDinku, Tufa
    contributor authorAnagnostou, Emmanouil N.
    date accessioned2017-06-09T16:47:24Z
    date available2017-06-09T16:47:24Z
    date copyright2005/02/01
    date issued2005
    identifier issn0894-8763
    identifier otherams-74122.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216313
    description abstractThe Tropical Rainfall Measuring Mission (TRMM) satellite carries a combination of active [precipitation radar (PR)] and multichannel passive microwave [the TRMM Microwave Imager (TMI)] sensors, which advance our ability to estimate rainfall over land. Rain retrieval from the TRMM PR is associated with an unprecedented accuracy and resolution but is limited in terms of sampling because of the narrow PR swath width (215 km). TMI provides wider coverage (760 km), but its observations are associated with a more complex relationship to precipitation in comparison with PR (especially over land). The PR rain estimates are used here for calibrating an overland TMI rain algorithm. The algorithm consists of 1) multichannel-based rain screening and convective/stratiform (C/S) classification schemes, and 2) nonlinear (linear) regressions for the rain-rate retrieval of stratiform (convective) rain regimes. This study examines regional differences in the algorithm performance. Four geographic regions consisting of central Africa (AFC), the Amazon (AMZ), the U.S. southern Plains (USA), and the Ganges?Brahmaputra?Meghna River basin (GBM) in south Asia are selected. Data from three summer months of 2000 and 2001 are used for calibration; validation is done using summer 2002 data. The current algorithm is also compared with the latest [version 6 (V6)] TRMM 2A12 product in terms of rain detection, and rain-rate retrieval error statistics on the basis of PR reference rainfall. The performance of the algorithm is different for the different regions. For instance, the reduction in random error (relative to 2A12 V6) is about 24%, 36%, 57%, and 165% for USA, AFC, AMZ, and GBM, respectively. However, significant difference between global (the four regions combined) and regional calibration is observed only for the GBM region.
    publisherAmerican Meteorological Society
    titleRegional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm
    typeJournal Paper
    journal volume44
    journal issue2
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2186.1
    journal fristpage189
    journal lastpage205
    treeJournal of Applied Meteorology:;2005:;volume( 044 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian