YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part II: Application to Test Cases and Validation

    Source: Journal of Applied Meteorology:;2004:;volume( 043 ):;issue: 012::page 1818
    Author:
    Costa, Maria João
    ,
    Levizzani, Vincenzo
    ,
    Silva, Ana Maria
    DOI: 10.1175/JAM2157.1
    Publisher: American Meteorological Society
    Abstract: A method based on the synergistic use of low earth orbit and geostationary earth orbit satellite data for aerosol-type characterization and aerosol optical thickness (AOT: τa) retrieval and monitoring over the ocean is presented in Part I of this paper. The method is now applied to a strong dust outbreak over the Atlantic Ocean in June 1997 and to two other relevant transport events of biomass burning and desert dust aerosol that occurred in 2000 over the Atlantic and Indian Oceans, respectively. The retrievals of the aerosol optical properties are checked against retrievals from sun and sky radiance measurements from the ground-based Aerosol Robotic Network (AERONET). The single-scattering albedo values obtained from AERONET are always within the error bars presented for Global Ozone Monitoring Experiment (GOME) retrievals, resulting in differences lower than 0.041. The retrieved AOT values are compared with the independent space?time-collocated measurements from the AERONET, as well as to the satellite aerosol official products of the Polarization and Directionality of the Earth Reflectances (POLDER) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A first estimate of the AOT accuracy derived from comparisons with AERONET data leads to ±0.02 ± 0.22τa when all AOT values are retained or to ±0.02 ± 0.16τa for aerosol transport events (AOT > 0.4). The upwelling flux at the top of the atmosphere (TOA) was computed with radiative transfer calculations and used to estimate the TOA direct shortwave aerosol radiative forcing; a comparison with space?time-collocated measurements from the Clouds and the Earth's Radiant Energy System (CERES) TOA flux product was also done. It was found that more than 90% of the values differ from CERES fluxes by less than ±15%.
    • Download: (3.612Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part II: Application to Test Cases and Validation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216280
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorCosta, Maria João
    contributor authorLevizzani, Vincenzo
    contributor authorSilva, Ana Maria
    date accessioned2017-06-09T16:47:20Z
    date available2017-06-09T16:47:20Z
    date copyright2004/12/01
    date issued2004
    identifier issn0894-8763
    identifier otherams-74093.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216280
    description abstractA method based on the synergistic use of low earth orbit and geostationary earth orbit satellite data for aerosol-type characterization and aerosol optical thickness (AOT: τa) retrieval and monitoring over the ocean is presented in Part I of this paper. The method is now applied to a strong dust outbreak over the Atlantic Ocean in June 1997 and to two other relevant transport events of biomass burning and desert dust aerosol that occurred in 2000 over the Atlantic and Indian Oceans, respectively. The retrievals of the aerosol optical properties are checked against retrievals from sun and sky radiance measurements from the ground-based Aerosol Robotic Network (AERONET). The single-scattering albedo values obtained from AERONET are always within the error bars presented for Global Ozone Monitoring Experiment (GOME) retrievals, resulting in differences lower than 0.041. The retrieved AOT values are compared with the independent space?time-collocated measurements from the AERONET, as well as to the satellite aerosol official products of the Polarization and Directionality of the Earth Reflectances (POLDER) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A first estimate of the AOT accuracy derived from comparisons with AERONET data leads to ±0.02 ± 0.22τa when all AOT values are retained or to ±0.02 ± 0.16τa for aerosol transport events (AOT > 0.4). The upwelling flux at the top of the atmosphere (TOA) was computed with radiative transfer calculations and used to estimate the TOA direct shortwave aerosol radiative forcing; a comparison with space?time-collocated measurements from the Clouds and the Earth's Radiant Energy System (CERES) TOA flux product was also done. It was found that more than 90% of the values differ from CERES fluxes by less than ±15%.
    publisherAmerican Meteorological Society
    titleAerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part II: Application to Test Cases and Validation
    typeJournal Paper
    journal volume43
    journal issue12
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2157.1
    journal fristpage1818
    journal lastpage1833
    treeJournal of Applied Meteorology:;2004:;volume( 043 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian