YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part I: Methodology and Sensitivity Analysis

    Source: Journal of Applied Meteorology:;2004:;volume( 043 ):;issue: 012::page 1799
    Author:
    Costa, Maria João
    ,
    Silva, Ana Maria
    ,
    Levizzani, Vincenzo
    DOI: 10.1175/JAM2156.1
    Publisher: American Meteorological Society
    Abstract: A method based on the synergistic use of low earth orbit (LEO) and geostationary earth orbit (GEO) satellite data for aerosol-type characterization, as well as aerosol optical thickness (AOT) retrieval and monitoring over the ocean, is presented. These properties are used for the estimation of the direct shortwave aerosol radiative forcing at the top of the atmosphere. The synergy serves the purpose of monitoring aerosol events at the GEO time and space scales while maintaining the accuracy level achieved with LEO instruments. Aerosol optical properties representative of the atmospheric conditions are obtained from the inversion of high-spectral-resolution measurements from the Global Ozone Monitoring Experiment (GOME). The aerosol optical properties are input for radiative transfer calculations for the retrieval of the AOT from GEO visible broadband measurements, avoiding the use of fixed aerosol models available in the literature. The retrieved effective aerosol optical properties represent an essential component for the aerosol radiative forcing assessment. A sensitivity analysis is also presented to quantify the effects that changes on the aerosol model may have on modeled results of spectral reflectance, AOT, and direct shortwave aerosol radiative forcing at the top of the atmosphere. The impact on modeled values of the physical assumptions on surface reflectance and vertical profiles of ozone and water vapor are analyzed. Results show that the aerosol model is the main factor influencing the investigated radiative variables. Results of the application of the method to several significant aerosol events, as well as their validation, are presented in a companion paper.
    • Download: (2.503Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part I: Methodology and Sensitivity Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216279
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorCosta, Maria João
    contributor authorSilva, Ana Maria
    contributor authorLevizzani, Vincenzo
    date accessioned2017-06-09T16:47:19Z
    date available2017-06-09T16:47:19Z
    date copyright2004/12/01
    date issued2004
    identifier issn0894-8763
    identifier otherams-74092.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216279
    description abstractA method based on the synergistic use of low earth orbit (LEO) and geostationary earth orbit (GEO) satellite data for aerosol-type characterization, as well as aerosol optical thickness (AOT) retrieval and monitoring over the ocean, is presented. These properties are used for the estimation of the direct shortwave aerosol radiative forcing at the top of the atmosphere. The synergy serves the purpose of monitoring aerosol events at the GEO time and space scales while maintaining the accuracy level achieved with LEO instruments. Aerosol optical properties representative of the atmospheric conditions are obtained from the inversion of high-spectral-resolution measurements from the Global Ozone Monitoring Experiment (GOME). The aerosol optical properties are input for radiative transfer calculations for the retrieval of the AOT from GEO visible broadband measurements, avoiding the use of fixed aerosol models available in the literature. The retrieved effective aerosol optical properties represent an essential component for the aerosol radiative forcing assessment. A sensitivity analysis is also presented to quantify the effects that changes on the aerosol model may have on modeled results of spectral reflectance, AOT, and direct shortwave aerosol radiative forcing at the top of the atmosphere. The impact on modeled values of the physical assumptions on surface reflectance and vertical profiles of ozone and water vapor are analyzed. Results show that the aerosol model is the main factor influencing the investigated radiative variables. Results of the application of the method to several significant aerosol events, as well as their validation, are presented in a companion paper.
    publisherAmerican Meteorological Society
    titleAerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part I: Methodology and Sensitivity Analysis
    typeJournal Paper
    journal volume43
    journal issue12
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2156.1
    journal fristpage1799
    journal lastpage1817
    treeJournal of Applied Meteorology:;2004:;volume( 043 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian