YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multidataset Study of Optimal Parameter and Uncertainty Estimation of a Land Surface Model with Bayesian Stochastic Inversion and Multicriteria Method

    Source: Journal of Applied Meteorology:;2004:;volume( 043 ):;issue: 010::page 1477
    Author:
    Xia, Youlong
    ,
    Sen, Mrinal K.
    ,
    Jackson, Charles S.
    ,
    Stoffa, Paul L.
    DOI: 10.1175/JAM2145.1
    Publisher: American Meteorological Society
    Abstract: This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.
    • Download: (720.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multidataset Study of Optimal Parameter and Uncertainty Estimation of a Land Surface Model with Bayesian Stochastic Inversion and Multicriteria Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216266
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorXia, Youlong
    contributor authorSen, Mrinal K.
    contributor authorJackson, Charles S.
    contributor authorStoffa, Paul L.
    date accessioned2017-06-09T16:47:18Z
    date available2017-06-09T16:47:18Z
    date copyright2004/10/01
    date issued2004
    identifier issn0894-8763
    identifier otherams-74081.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216266
    description abstractThis study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.
    publisherAmerican Meteorological Society
    titleMultidataset Study of Optimal Parameter and Uncertainty Estimation of a Land Surface Model with Bayesian Stochastic Inversion and Multicriteria Method
    typeJournal Paper
    journal volume43
    journal issue10
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/JAM2145.1
    journal fristpage1477
    journal lastpage1497
    treeJournal of Applied Meteorology:;2004:;volume( 043 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian