YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulating Competition and Coexistence between Plant Functional Types in a Dynamic Vegetation Model

    Source: Earth Interactions:;2006:;volume( 010 ):;issue: 010::page 1
    Author:
    Arora, Vivek K.
    ,
    Boer, George J.
    DOI: 10.1175/EI170.1
    Publisher: American Meteorological Society
    Abstract: The global distribution of vegetation is broadly determined by climate, and where bioclimatic parameters are favorable for several plant functional types (PFTs), by the competition between them. Most current dynamic global vegetation models (DGVMs) do not, however, explicitly simulate inter-PFT competition and instead determine the existence and fractional coverage of PFTs based on quasi-equilibrium climate?vegetation relationships. When competition is explicitly simulated, versions of Lotka?Volterra (LV) equations developed in the context of interaction between animal species are almost always used. These equations may, however, exhibit unrealistic behavior in some cases and do not, for example, allow the coexistence of different PFTs in equilibrium situations. Coexistence may, however, be obtained by introducing features and mechanisms such as temporal environmental variation and disturbance, among others. A generalized version of the competition equations is proposed that includes the LV equations as a special case, which successfully models competition for a range of climate and vegetation regimes and for which coexistence is a permissible equilibrium solution in the absence of additional mechanisms. The approach is tested for boreal forest, tropical forest, savanna, and temperate forest locations within the framework of the Canadian Terrestrial Ecosystem Model (CTEM) and successfully simulates the observed successional behavior and the observed near-equilibrium distribution of coexisting PFTs.
    • Download: (1.822Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulating Competition and Coexistence between Plant Functional Types in a Dynamic Vegetation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216151
    Collections
    • Earth Interactions

    Show full item record

    contributor authorArora, Vivek K.
    contributor authorBoer, George J.
    date accessioned2017-06-09T16:46:57Z
    date available2017-06-09T16:46:57Z
    date copyright2006/05/01
    date issued2006
    identifier otherams-73978.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216151
    description abstractThe global distribution of vegetation is broadly determined by climate, and where bioclimatic parameters are favorable for several plant functional types (PFTs), by the competition between them. Most current dynamic global vegetation models (DGVMs) do not, however, explicitly simulate inter-PFT competition and instead determine the existence and fractional coverage of PFTs based on quasi-equilibrium climate?vegetation relationships. When competition is explicitly simulated, versions of Lotka?Volterra (LV) equations developed in the context of interaction between animal species are almost always used. These equations may, however, exhibit unrealistic behavior in some cases and do not, for example, allow the coexistence of different PFTs in equilibrium situations. Coexistence may, however, be obtained by introducing features and mechanisms such as temporal environmental variation and disturbance, among others. A generalized version of the competition equations is proposed that includes the LV equations as a special case, which successfully models competition for a range of climate and vegetation regimes and for which coexistence is a permissible equilibrium solution in the absence of additional mechanisms. The approach is tested for boreal forest, tropical forest, savanna, and temperate forest locations within the framework of the Canadian Terrestrial Ecosystem Model (CTEM) and successfully simulates the observed successional behavior and the observed near-equilibrium distribution of coexisting PFTs.
    publisherAmerican Meteorological Society
    titleSimulating Competition and Coexistence between Plant Functional Types in a Dynamic Vegetation Model
    typeJournal Paper
    journal volume10
    journal issue10
    journal titleEarth Interactions
    identifier doi10.1175/EI170.1
    journal fristpage1
    journal lastpage30
    treeEarth Interactions:;2006:;volume( 010 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian