YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Artificial Intelligence to Improve Real-Time Decision Making for High-Impact Weather

    Source: Bulletin of the American Meteorological Society:;2017:;volume( 098 ):;issue: 010::page 2073
    Author:
    McGovern, Amy
    ,
    Elmore, Kimberly L.
    ,
    Gagne, David John
    ,
    Haupt, Sue Ellen
    ,
    Karstens, Christopher D.
    ,
    Lagerquist, Ryan
    ,
    Smith, Travis
    ,
    Williams, John K.
    DOI: 10.1175/BAMS-D-16-0123.1
    Publisher: American Meteorological Society
    Abstract: is paper demonstrates that modern AI techniques can aid forecasters on a wide variety of high-impact weather phenomena.
    • Download: (2.899Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Artificial Intelligence to Improve Real-Time Decision Making for High-Impact Weather

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4216031
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorMcGovern, Amy
    contributor authorElmore, Kimberly L.
    contributor authorGagne, David John
    contributor authorHaupt, Sue Ellen
    contributor authorKarstens, Christopher D.
    contributor authorLagerquist, Ryan
    contributor authorSmith, Travis
    contributor authorWilliams, John K.
    date accessioned2017-06-09T16:46:35Z
    date available2017-06-09T16:46:35Z
    date issued2017
    identifier issn0003-0007
    identifier otherams-73870.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4216031
    description abstractis paper demonstrates that modern AI techniques can aid forecasters on a wide variety of high-impact weather phenomena.
    publisherAmerican Meteorological Society
    titleUsing Artificial Intelligence to Improve Real-Time Decision Making for High-Impact Weather
    typeJournal Paper
    journal volume098
    journal issue010
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-16-0123.1
    journal fristpage2073
    journal lastpage2090
    treeBulletin of the American Meteorological Society:;2017:;volume( 098 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian