YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Subseasonal to Seasonal (S2S) Prediction Project Database

    Source: Bulletin of the American Meteorological Society:;2016:;volume( 098 ):;issue: 001::page 163
    Author:
    Vitart, F.
    ,
    Ardilouze, C.
    ,
    Bonet, A.
    ,
    Brookshaw, A.
    ,
    Chen, M.
    ,
    Codorean, C.
    ,
    Déqué, M.
    ,
    Ferranti, L.
    ,
    Fucile, E.
    ,
    Fuentes, M.
    ,
    Hendon, H.
    ,
    Hodgson, J.
    ,
    Kang, H.-S.
    ,
    Kumar, A.
    ,
    Lin, H.
    ,
    Liu, G.
    ,
    Liu, X.
    ,
    Malguzzi, P.
    ,
    Mallas, I.
    ,
    Manoussakis, M.
    ,
    Mastrangelo, D.
    ,
    MacLachlan, C.
    ,
    McLean, P.
    ,
    Minami, A.
    ,
    Mladek, R.
    ,
    Nakazawa, T.
    ,
    Najm, S.
    ,
    Nie, Y.
    ,
    Rixen, M.
    ,
    Robertson, A. W.
    ,
    Ruti, P.
    ,
    Sun, C.
    ,
    Takaya, Y.
    ,
    Tolstykh, M.
    ,
    Venuti, F.
    ,
    Waliser, D.
    ,
    Woolnough, S.
    ,
    Wu, T.
    ,
    Won, D.-J.
    ,
    Xiao, H.
    ,
    Zaripov, R.
    ,
    Zhang, L.
    DOI: 10.1175/BAMS-D-16-0017.1
    Publisher: American Meteorological Society
    Abstract: emands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been considered for a long time as a ?desert of predictability.? In particular, this database will help identify common successes and shortcomings in the model simulation and prediction of sources of subseasonal to seasonal predictability. For instance, a preliminary study suggests that the S2S models significantly underestimate the amplitude of the Madden?Julian oscillation (MJO) teleconnections over the Euro-Atlantic sector. The S2S database also represents an important tool for case studies of extreme events. For instance, a multimodel combination of S2S models displays higher probability of a landfall over the islands of Vanuatu 2?3 weeks before Tropical Cyclone Pam devastated the islands in March 2015.
    • Download: (17.14Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Subseasonal to Seasonal (S2S) Prediction Project Database

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4215996
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorVitart, F.
    contributor authorArdilouze, C.
    contributor authorBonet, A.
    contributor authorBrookshaw, A.
    contributor authorChen, M.
    contributor authorCodorean, C.
    contributor authorDéqué, M.
    contributor authorFerranti, L.
    contributor authorFucile, E.
    contributor authorFuentes, M.
    contributor authorHendon, H.
    contributor authorHodgson, J.
    contributor authorKang, H.-S.
    contributor authorKumar, A.
    contributor authorLin, H.
    contributor authorLiu, G.
    contributor authorLiu, X.
    contributor authorMalguzzi, P.
    contributor authorMallas, I.
    contributor authorManoussakis, M.
    contributor authorMastrangelo, D.
    contributor authorMacLachlan, C.
    contributor authorMcLean, P.
    contributor authorMinami, A.
    contributor authorMladek, R.
    contributor authorNakazawa, T.
    contributor authorNajm, S.
    contributor authorNie, Y.
    contributor authorRixen, M.
    contributor authorRobertson, A. W.
    contributor authorRuti, P.
    contributor authorSun, C.
    contributor authorTakaya, Y.
    contributor authorTolstykh, M.
    contributor authorVenuti, F.
    contributor authorWaliser, D.
    contributor authorWoolnough, S.
    contributor authorWu, T.
    contributor authorWon, D.-J.
    contributor authorXiao, H.
    contributor authorZaripov, R.
    contributor authorZhang, L.
    date accessioned2017-06-09T16:46:27Z
    date available2017-06-09T16:46:27Z
    date copyright2017/01/01
    date issued2016
    identifier issn0003-0007
    identifier otherams-73838.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215996
    description abstractemands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been considered for a long time as a ?desert of predictability.? In particular, this database will help identify common successes and shortcomings in the model simulation and prediction of sources of subseasonal to seasonal predictability. For instance, a preliminary study suggests that the S2S models significantly underestimate the amplitude of the Madden?Julian oscillation (MJO) teleconnections over the Euro-Atlantic sector. The S2S database also represents an important tool for case studies of extreme events. For instance, a multimodel combination of S2S models displays higher probability of a landfall over the islands of Vanuatu 2?3 weeks before Tropical Cyclone Pam devastated the islands in March 2015.
    publisherAmerican Meteorological Society
    titleThe Subseasonal to Seasonal (S2S) Prediction Project Database
    typeJournal Paper
    journal volume98
    journal issue1
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-16-0017.1
    journal fristpage163
    journal lastpage173
    treeBulletin of the American Meteorological Society:;2016:;volume( 098 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian