YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Parameterization: Toward a New View of Weather and Climate Models

    Source: Bulletin of the American Meteorological Society:;2016:;volume( 098 ):;issue: 003::page 565
    Author:
    Berner, Judith
    ,
    Achatz, Ulrich
    ,
    Batté, Lauriane
    ,
    Bengtsson, Lisa
    ,
    Cámara, Alvaro de la
    ,
    Christensen, Hannah M.
    ,
    Colangeli, Matteo
    ,
    Coleman, Danielle R. B.
    ,
    Crommelin, Daan
    ,
    Dolaptchiev, Stamen I.
    ,
    Franzke, Christian L. E.
    ,
    Friederichs, Petra
    ,
    Imkeller, Peter
    ,
    Järvinen, Heikki
    ,
    Juricke, Stephan
    ,
    Kitsios, Vassili
    ,
    Lott, François
    ,
    Lucarini, Valerio
    ,
    Mahajan, Salil
    ,
    Palmer, Timothy N.
    ,
    Penland, Cécile
    ,
    Sakradzija, Mirjana
    ,
    von Storch, Jin-Song
    ,
    Weisheimer, Antje
    ,
    Weniger, Michael
    ,
    Williams, Paul D.
    ,
    Yano, Jun-Ichi
    DOI: 10.1175/BAMS-D-15-00268.1
    Publisher: American Meteorological Society
    Abstract: he last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.
    • Download: (15.19Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Parameterization: Toward a New View of Weather and Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4215953
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorBerner, Judith
    contributor authorAchatz, Ulrich
    contributor authorBatté, Lauriane
    contributor authorBengtsson, Lisa
    contributor authorCámara, Alvaro de la
    contributor authorChristensen, Hannah M.
    contributor authorColangeli, Matteo
    contributor authorColeman, Danielle R. B.
    contributor authorCrommelin, Daan
    contributor authorDolaptchiev, Stamen I.
    contributor authorFranzke, Christian L. E.
    contributor authorFriederichs, Petra
    contributor authorImkeller, Peter
    contributor authorJärvinen, Heikki
    contributor authorJuricke, Stephan
    contributor authorKitsios, Vassili
    contributor authorLott, François
    contributor authorLucarini, Valerio
    contributor authorMahajan, Salil
    contributor authorPalmer, Timothy N.
    contributor authorPenland, Cécile
    contributor authorSakradzija, Mirjana
    contributor authorvon Storch, Jin-Song
    contributor authorWeisheimer, Antje
    contributor authorWeniger, Michael
    contributor authorWilliams, Paul D.
    contributor authorYano, Jun-Ichi
    date accessioned2017-06-09T16:46:19Z
    date available2017-06-09T16:46:19Z
    date copyright2017/03/01
    date issued2016
    identifier issn0003-0007
    identifier otherams-73800.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215953
    description abstracthe last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.
    publisherAmerican Meteorological Society
    titleStochastic Parameterization: Toward a New View of Weather and Climate Models
    typeJournal Paper
    journal volume98
    journal issue3
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-D-15-00268.1
    journal fristpage565
    journal lastpage588
    treeBulletin of the American Meteorological Society:;2016:;volume( 098 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian