The Deep Convective Clouds and Chemistry (DC3) Field CampaignSource: Bulletin of the American Meteorological Society:;2014:;volume( 096 ):;issue: 008::page 1281Author:Barth, Mary C.
,
Cantrell, Christopher A.
,
Brune, William H.
,
Rutledge, Steven A.
,
Crawford, James H.
,
Huntrieser, Heidi
,
Carey, Lawrence D.
,
MacGorman, Donald
,
Weisman, Morris
,
Pickering, Kenneth E.
,
Bruning, Eric
,
Anderson, Bruce
,
Apel, Eric
,
Biggerstaff, Michael
,
Campos, Teresa
,
Campuzano-Jost, Pedro
,
Cohen, Ronald
,
Crounse, John
,
Day, Douglas A.
,
Diskin, Glenn
,
Flocke, Frank
,
Fried, Alan
,
Garland, Charity
,
Heikes, Brian
,
Honomichl, Shawn
,
Hornbrook, Rebecca
,
Huey, L. Gregory
,
Jimenez, Jose L.
,
Lang, Timothy
,
Lichtenstern, Michael
,
Mikoviny, Tomas
,
Nault, Benjamin
,
O’Sullivan, Daniel
,
Pan, Laura L.
,
Peischl, Jeff
,
Pollack, Ilana
,
Richter, Dirk
,
Riemer, Daniel
,
Ryerson, Thomas
,
Schlager, Hans
,
St. Clair, Jason
,
Walega, James
,
Weibring, Petter
,
Weinheimer, Andrew
,
Wennberg, Paul
,
Wisthaler, Armin
,
Wooldridge, Paul J.
,
Ziegler, Conrad
DOI: 10.1175/BAMS-D-13-00290.1Publisher: American Meteorological Society
Abstract: he Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.
|
Collections
Show full item record
contributor author | Barth, Mary C. | |
contributor author | Cantrell, Christopher A. | |
contributor author | Brune, William H. | |
contributor author | Rutledge, Steven A. | |
contributor author | Crawford, James H. | |
contributor author | Huntrieser, Heidi | |
contributor author | Carey, Lawrence D. | |
contributor author | MacGorman, Donald | |
contributor author | Weisman, Morris | |
contributor author | Pickering, Kenneth E. | |
contributor author | Bruning, Eric | |
contributor author | Anderson, Bruce | |
contributor author | Apel, Eric | |
contributor author | Biggerstaff, Michael | |
contributor author | Campos, Teresa | |
contributor author | Campuzano-Jost, Pedro | |
contributor author | Cohen, Ronald | |
contributor author | Crounse, John | |
contributor author | Day, Douglas A. | |
contributor author | Diskin, Glenn | |
contributor author | Flocke, Frank | |
contributor author | Fried, Alan | |
contributor author | Garland, Charity | |
contributor author | Heikes, Brian | |
contributor author | Honomichl, Shawn | |
contributor author | Hornbrook, Rebecca | |
contributor author | Huey, L. Gregory | |
contributor author | Jimenez, Jose L. | |
contributor author | Lang, Timothy | |
contributor author | Lichtenstern, Michael | |
contributor author | Mikoviny, Tomas | |
contributor author | Nault, Benjamin | |
contributor author | O’Sullivan, Daniel | |
contributor author | Pan, Laura L. | |
contributor author | Peischl, Jeff | |
contributor author | Pollack, Ilana | |
contributor author | Richter, Dirk | |
contributor author | Riemer, Daniel | |
contributor author | Ryerson, Thomas | |
contributor author | Schlager, Hans | |
contributor author | St. Clair, Jason | |
contributor author | Walega, James | |
contributor author | Weibring, Petter | |
contributor author | Weinheimer, Andrew | |
contributor author | Wennberg, Paul | |
contributor author | Wisthaler, Armin | |
contributor author | Wooldridge, Paul J. | |
contributor author | Ziegler, Conrad | |
date accessioned | 2017-06-09T16:45:20Z | |
date available | 2017-06-09T16:45:20Z | |
date copyright | 2015/08/01 | |
date issued | 2014 | |
identifier issn | 0003-0007 | |
identifier other | ams-73529.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4215653 | |
description abstract | he Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection. | |
publisher | American Meteorological Society | |
title | The Deep Convective Clouds and Chemistry (DC3) Field Campaign | |
type | Journal Paper | |
journal volume | 96 | |
journal issue | 8 | |
journal title | Bulletin of the American Meteorological Society | |
identifier doi | 10.1175/BAMS-D-13-00290.1 | |
journal fristpage | 1281 | |
journal lastpage | 1309 | |
tree | Bulletin of the American Meteorological Society:;2014:;volume( 096 ):;issue: 008 | |
contenttype | Fulltext |