YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Global Circuit Intensity: Its Measurement and Variation over the Last 50 Years

    Source: Bulletin of the American Meteorological Society:;2007:;volume( 088 ):;issue: 002::page 223
    Author:
    Markson, Ralph
    DOI: 10.1175/BAMS-88-2-223
    Publisher: American Meteorological Society
    Abstract: A fundamental problem in atmospheric electric research has been measurement of the intensity and variation of Earth's electric field, which is proportional to ionospheric potential (Vi). To obtain its magnitude an electric field sounding through the atmosphere is required. Data from the three programs that have measured Vi during the last half century were combined to determine the secular variation of global circuit intensity. The average geoelectric potential (Vi) magnitude has remained relatively constant at about 240 kV, except for a temporary increase of as much as 40% following a period of intense atmospheric nuclear testing in the early 1960s. Experiments were conducted to investigate the affect of temperature on Vi. Continental-scale hourly ground-level air temperature variation modulates the intensity of Vi and there is negative feedback involving cloud development that would stabilize temperature on the diurnal time scale. However, increased temperature-driven convection will increase water vapor in the troposphere and thus provide positive feedback enhancing global warming on longer time scales. Significant differences exist between the intensity of the DC global circuit and the diurnal and annual variations of global lightning frequency. The previously unknown minimum-to-maximum seasonal variation of Earth's electric field is about 15% of the mean with a maximum in late Northern Hemisphere summer and a minimum in winter.
    • Download: (1.005Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Global Circuit Intensity: Its Measurement and Variation over the Last 50 Years

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4215041
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorMarkson, Ralph
    date accessioned2017-06-09T16:43:20Z
    date available2017-06-09T16:43:20Z
    date copyright2007/02/01
    date issued2007
    identifier issn0003-0007
    identifier otherams-72979.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4215041
    description abstractA fundamental problem in atmospheric electric research has been measurement of the intensity and variation of Earth's electric field, which is proportional to ionospheric potential (Vi). To obtain its magnitude an electric field sounding through the atmosphere is required. Data from the three programs that have measured Vi during the last half century were combined to determine the secular variation of global circuit intensity. The average geoelectric potential (Vi) magnitude has remained relatively constant at about 240 kV, except for a temporary increase of as much as 40% following a period of intense atmospheric nuclear testing in the early 1960s. Experiments were conducted to investigate the affect of temperature on Vi. Continental-scale hourly ground-level air temperature variation modulates the intensity of Vi and there is negative feedback involving cloud development that would stabilize temperature on the diurnal time scale. However, increased temperature-driven convection will increase water vapor in the troposphere and thus provide positive feedback enhancing global warming on longer time scales. Significant differences exist between the intensity of the DC global circuit and the diurnal and annual variations of global lightning frequency. The previously unknown minimum-to-maximum seasonal variation of Earth's electric field is about 15% of the mean with a maximum in late Northern Hemisphere summer and a minimum in winter.
    publisherAmerican Meteorological Society
    titleThe Global Circuit Intensity: Its Measurement and Variation over the Last 50 Years
    typeJournal Paper
    journal volume88
    journal issue2
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/BAMS-88-2-223
    journal fristpage223
    journal lastpage241
    treeBulletin of the American Meteorological Society:;2007:;volume( 088 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian