Design and Construction of an Affordable Rotating Table for Classroom Demonstrations of Geophysical Fluid Dynamics PrinciplesSource: Bulletin of the American Meteorological Society:;2003:;volume( 084 ):;issue: 012::page 1827Author:McNoldy, Brian D.
,
Cheng, Anning
,
Eitzen, Zachary A.
,
Moore, Richard W.
,
Persing, John
,
Schaefer, Kevin
,
Schubert, Wayne H.
DOI: 10.1175/BAMS-84-12-1827Publisher: American Meteorological Society
Abstract: Rotating tables have been in use for many years because of their ability to demonstrate fluid dynamical phenomena, shedding insight on the sometimes complicated or esoteric mathematics used to describe such processes. A small team of students at the Colorado State University (CSU) Department of Atmospheric Science constructed a rotating table, or ?spin tank,? assembly that is simple and affordable, yet instructive. The apparatus is designed to be easy to maintain and operate. The number of moving parts is kept at a minimum, and the electrical components chosen are of high quality. With the aid of a brief instruction manual or tutorial, students and faculty can operate the rotating table and easily perform many demonstrations, with the freedom to vary fluid depth, rotation rate, and acceleration. The entire design and construction process was conducted on a limited budget of $3,000. A spin tank such as this has practical applications for the qualitative study of fluid dynamics. Fundamental concepts in rotating flow dynamics can be demonstrated to supplement the more rigorous mathematical treatment typically given in oceanography or atmospheric physics graduate-level courses. Topics that have been explored thus far are Ekman pumping, Taylor columns, and barotropic instability, but could be broadened to include subjects such as Rossby waves, baroclinic instability, vortex merger, and thermal convection.
|
Collections
Show full item record
contributor author | McNoldy, Brian D. | |
contributor author | Cheng, Anning | |
contributor author | Eitzen, Zachary A. | |
contributor author | Moore, Richard W. | |
contributor author | Persing, John | |
contributor author | Schaefer, Kevin | |
contributor author | Schubert, Wayne H. | |
date accessioned | 2017-06-09T16:42:12Z | |
date available | 2017-06-09T16:42:12Z | |
date copyright | 2003/12/01 | |
date issued | 2003 | |
identifier issn | 0003-0007 | |
identifier other | ams-72568.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4214585 | |
description abstract | Rotating tables have been in use for many years because of their ability to demonstrate fluid dynamical phenomena, shedding insight on the sometimes complicated or esoteric mathematics used to describe such processes. A small team of students at the Colorado State University (CSU) Department of Atmospheric Science constructed a rotating table, or ?spin tank,? assembly that is simple and affordable, yet instructive. The apparatus is designed to be easy to maintain and operate. The number of moving parts is kept at a minimum, and the electrical components chosen are of high quality. With the aid of a brief instruction manual or tutorial, students and faculty can operate the rotating table and easily perform many demonstrations, with the freedom to vary fluid depth, rotation rate, and acceleration. The entire design and construction process was conducted on a limited budget of $3,000. A spin tank such as this has practical applications for the qualitative study of fluid dynamics. Fundamental concepts in rotating flow dynamics can be demonstrated to supplement the more rigorous mathematical treatment typically given in oceanography or atmospheric physics graduate-level courses. Topics that have been explored thus far are Ekman pumping, Taylor columns, and barotropic instability, but could be broadened to include subjects such as Rossby waves, baroclinic instability, vortex merger, and thermal convection. | |
publisher | American Meteorological Society | |
title | Design and Construction of an Affordable Rotating Table for Classroom Demonstrations of Geophysical Fluid Dynamics Principles | |
type | Journal Paper | |
journal volume | 84 | |
journal issue | 12 | |
journal title | Bulletin of the American Meteorological Society | |
identifier doi | 10.1175/BAMS-84-12-1827 | |
journal fristpage | 1827 | |
journal lastpage | 1834 | |
tree | Bulletin of the American Meteorological Society:;2003:;volume( 084 ):;issue: 012 | |
contenttype | Fulltext |