YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Impact of Local Feedbacks in the Central Pacific on the ENSO Cycle

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 014::page 2396
    Author:
    Burgers, Gerrit
    ,
    Jan van Oldenborgh, Geert
    DOI: 10.1175/2766.1
    Publisher: American Meteorological Society
    Abstract: While sea surface temperature (SST) anomalies in the eastern equatorial Pacific are dominated by the thermocline feedback, in the central equatorial Pacific local wind effects, such as zonal advection, are important as well. El Niño?Southern Oscillation (ENSO) simulations with a linear model improve markedly if these effects are included as a local wind stress feedback on SST. An atmosphere model that reacts both to eastern and central Pacific SST anomalies is needed for producing a realistic ENSO cycle. First, simulations are studied of a linear 1.5-layer reduced-gravity ocean model and a linear SST anomaly equation, forced by observed monthly wind stress. If only the thermocline feedback is present in the SST equation, SST can be simulated well in the eastern Pacific, but, contrary to observations, central Pacific SST is out of phase with the eastern Pacific. If a wind stress feedback is added in the SST equation, as a term proportional to the zonal wind stress, correlations between observed and simulated SST are above 0.8 in both the central and eastern Pacific, and the correlation between the Niño-3 (5°S?5°N, 90°?150°W) and Niño-4 (5°S?5°N, 150°W?160°E) indexes is close to the observed value of 0.75. Next, a statistical atmosphere is added to the ocean module that is based on a regression of observed wind stress to the observed Niño-3 and Niño-4 indexes. The coupled system is driven by noise that is inferred from the residues of the fit and has a red component. The observed Niño-3?Niño-4 index correlation can be reproduced only with a wind stress feedback in the central Pacific. Also, the level of SST variability rises and the ENSO period increases to more realistic values. The interplay between the local wind stress and the thermocline feedbacks, therefore, is an important factor in the structure of ENSO in the coupled linear model. In the eastern Pacific, the thermocline feedback dominates SST anomalies; in the central Pacific, the local wind stress feedback. Due to the local wind stress feedback, the ENSO wind stress response excites SST anomalies in the central Pacific, extending the ENSO SST anomaly pattern well into the central Pacific. In turn, these central Pacific SST anomalies give rise to wind stress anomalies that are situated more westward than the response to eastern Pacific SST anomalies. As a result, the ENSO amplitude is enhanced and the ENSO period increased. Also, central Pacific SST anomalies are not completely determined by eastern Pacific SST anomalies and they persist longer.
    • Download: (589.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Impact of Local Feedbacks in the Central Pacific on the ENSO Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214347
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBurgers, Gerrit
    contributor authorJan van Oldenborgh, Geert
    date accessioned2017-06-09T16:41:38Z
    date available2017-06-09T16:41:38Z
    date copyright2003/07/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-72353.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214347
    description abstractWhile sea surface temperature (SST) anomalies in the eastern equatorial Pacific are dominated by the thermocline feedback, in the central equatorial Pacific local wind effects, such as zonal advection, are important as well. El Niño?Southern Oscillation (ENSO) simulations with a linear model improve markedly if these effects are included as a local wind stress feedback on SST. An atmosphere model that reacts both to eastern and central Pacific SST anomalies is needed for producing a realistic ENSO cycle. First, simulations are studied of a linear 1.5-layer reduced-gravity ocean model and a linear SST anomaly equation, forced by observed monthly wind stress. If only the thermocline feedback is present in the SST equation, SST can be simulated well in the eastern Pacific, but, contrary to observations, central Pacific SST is out of phase with the eastern Pacific. If a wind stress feedback is added in the SST equation, as a term proportional to the zonal wind stress, correlations between observed and simulated SST are above 0.8 in both the central and eastern Pacific, and the correlation between the Niño-3 (5°S?5°N, 90°?150°W) and Niño-4 (5°S?5°N, 150°W?160°E) indexes is close to the observed value of 0.75. Next, a statistical atmosphere is added to the ocean module that is based on a regression of observed wind stress to the observed Niño-3 and Niño-4 indexes. The coupled system is driven by noise that is inferred from the residues of the fit and has a red component. The observed Niño-3?Niño-4 index correlation can be reproduced only with a wind stress feedback in the central Pacific. Also, the level of SST variability rises and the ENSO period increases to more realistic values. The interplay between the local wind stress and the thermocline feedbacks, therefore, is an important factor in the structure of ENSO in the coupled linear model. In the eastern Pacific, the thermocline feedback dominates SST anomalies; in the central Pacific, the local wind stress feedback. Due to the local wind stress feedback, the ENSO wind stress response excites SST anomalies in the central Pacific, extending the ENSO SST anomaly pattern well into the central Pacific. In turn, these central Pacific SST anomalies give rise to wind stress anomalies that are situated more westward than the response to eastern Pacific SST anomalies. As a result, the ENSO amplitude is enhanced and the ENSO period increased. Also, central Pacific SST anomalies are not completely determined by eastern Pacific SST anomalies and they persist longer.
    publisherAmerican Meteorological Society
    titleOn the Impact of Local Feedbacks in the Central Pacific on the ENSO Cycle
    typeJournal Paper
    journal volume16
    journal issue14
    journal titleJournal of Climate
    identifier doi10.1175/2766.1
    journal fristpage2396
    journal lastpage2407
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 014
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian