YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic

    Source: Monthly Weather Review:;2011:;volume( 140 ):;issue: 004::page 1047
    Author:
    Peng, Melinda S.
    ,
    Fu, Bing
    ,
    Li, Tim
    ,
    Stevens, Duane E.
    DOI: 10.1175/2011MWR3617.1
    Publisher: American Meteorological Society
    Abstract: his study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3?8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific.A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000?600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925?400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.
    • Download: (6.226Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214154
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPeng, Melinda S.
    contributor authorFu, Bing
    contributor authorLi, Tim
    contributor authorStevens, Duane E.
    date accessioned2017-06-09T16:41:05Z
    date available2017-06-09T16:41:05Z
    date copyright2012/04/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-72180.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214154
    description abstracthis study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3?8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific.A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000?600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925?400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.
    publisherAmerican Meteorological Society
    titleDeveloping versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/2011MWR3617.1
    journal fristpage1047
    journal lastpage1066
    treeMonthly Weather Review:;2011:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian