YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Validation and Interpretation of Adjoint-Derived Sensitivity Steering Vector as Targeted Observation Guidance

    Source: Monthly Weather Review:;2011:;volume( 139 ):;issue: 005::page 1608
    Author:
    Chen, Shin-Gan
    ,
    Wu, Chun-Chieh
    ,
    Chen, Jan-Huey
    ,
    Chou, Kun-Hsuan
    DOI: 10.1175/2011MWR3490.1
    Publisher: American Meteorological Society
    Abstract: he adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated.In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.
    • Download: (3.506Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Validation and Interpretation of Adjoint-Derived Sensitivity Steering Vector as Targeted Observation Guidance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214118
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChen, Shin-Gan
    contributor authorWu, Chun-Chieh
    contributor authorChen, Jan-Huey
    contributor authorChou, Kun-Hsuan
    date accessioned2017-06-09T16:40:58Z
    date available2017-06-09T16:40:58Z
    date copyright2011/05/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-72147.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214118
    description abstracthe adjoint-derived sensitivity steering vector (ADSSV) has been proposed and applied as a guidance for targeted observation in the field programs for improving tropical cyclone predictability, such as The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC). The ADSSV identifies sensitive areas at the observing time to the steering flow at the verifying time through adjoint calculation. In addition, the ability of the ADSSV to represent signals of influence from synoptic systems such as the midlatitude trough and the subtropical high prior to the recurvature of Typhoon Shanshan (2006) has also been demonstrated.In this study, the impact of initial perturbations associated with the high or low ADSSV sensitivity on model simulations is investigated by systematically perturbing initial vorticity fields in the case of Shanshan. Results show that experiments with the perturbed initial conditions located in the high ADSSV area (i.e., the midlatitude trough and the subtropical high) lead to more track deflection relative to the unperturbed control run than experiments with perturbations in the low sensitivity area. The evolutions of the deep-layer-mean steering flow and the direction of the ADSSV are compared to provide conceptual interpretation and validation on the physical meaning of the ADSSV. Concerning the results associated with the perturbed regions in high sensitivity regions, the variation of the steering flow within the verifying area due to the initial perturbations is generally consistent with that of the direction of the ADSSV. In addition, the bifurcation between the ADSSV and the steering change becomes larger with the increased integration time. However, the result for the perturbed region in the low-sensitivity region indicates that the steering change does not have good agreement with the ADSSV. The large initial perturbations to the low-sensitivity region may interact with the trough to the north due to the nonlinearity, which may not be accounted for in the ADSSV. Furthermore, the effect of perturbations specifically within the sensitive vertical layers is investigated to validate the vertical structure of the ADSSV. The structure of kinetic energy shows that the perturbation associated with the trough (subtropical high) specifically in the mid-to-upper (mid-to-lower) troposphere evolves similarly to that in the deep-layer troposphere, leading to comparable track changes. A sensitivity test in which perturbations are locally introduced in a higher-sensitivity area is conducted to examine the different impact as compared to that perturbed with the broader synoptic feature.
    publisherAmerican Meteorological Society
    titleValidation and Interpretation of Adjoint-Derived Sensitivity Steering Vector as Targeted Observation Guidance
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/2011MWR3490.1
    journal fristpage1608
    journal lastpage1625
    treeMonthly Weather Review:;2011:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian