YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistics of Cloud Optical Properties from Airborne Lidar Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 007::page 869
    Author:
    Yorks, John E.
    ,
    Hlavka, Dennis L.
    ,
    Hart, William D.
    ,
    McGill, Matthew J.
    DOI: 10.1175/2011JTECHA1507.1
    Publisher: American Meteorological Society
    Abstract: ccurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003?07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered at 25 sr for ice clouds and 16 sr for altocumulus clouds. On average, for ice clouds the lidar ratio slightly decreases with decreasing temperature, while the volume depolarization ratio increases significantly as temperatures decrease. Trends for liquid water clouds (altocumulus clouds) are also observed. Ultimately, these observed trends in optical properties, as functions of temperature and geographic location, should help to improve current parameterizations of extinction-to-backscatter ratio, which in turn should yield increased accuracy in cloud optical depth and radiative forcing estimates.
    • Download: (1.462Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistics of Cloud Optical Properties from Airborne Lidar Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214093
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorYorks, John E.
    contributor authorHlavka, Dennis L.
    contributor authorHart, William D.
    contributor authorMcGill, Matthew J.
    date accessioned2017-06-09T16:40:55Z
    date available2017-06-09T16:40:55Z
    date copyright2011/07/01
    date issued2011
    identifier issn0739-0572
    identifier otherams-72124.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214093
    description abstractccurate knowledge of cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, can have a significant impact on the quality of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in nonideal conditions to determine cloud phase and optical depth. Statistics and trends of these optical parameters are analyzed for 4 yr (2003?07) of cloud physics lidar data during five projects that occurred in varying geographic locations and meteorological seasons. Extinction-to-backscatter ratios (also called lidar ratios) are derived at 532 nm by calculating the transmission loss through the cloud layer and then applying it to the attenuated backscatter profile in the layer, while volume depolarization ratios are computed using the ratio of the parallel and perpendicular polarized 1064-nm channels. The majority of the cloud layers yields a lidar ratio between 10 and 40 sr, with the lidar ratio frequency distribution centered at 25 sr for ice clouds and 16 sr for altocumulus clouds. On average, for ice clouds the lidar ratio slightly decreases with decreasing temperature, while the volume depolarization ratio increases significantly as temperatures decrease. Trends for liquid water clouds (altocumulus clouds) are also observed. Ultimately, these observed trends in optical properties, as functions of temperature and geographic location, should help to improve current parameterizations of extinction-to-backscatter ratio, which in turn should yield increased accuracy in cloud optical depth and radiative forcing estimates.
    publisherAmerican Meteorological Society
    titleStatistics of Cloud Optical Properties from Airborne Lidar Measurements
    typeJournal Paper
    journal volume28
    journal issue7
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2011JTECHA1507.1
    journal fristpage869
    journal lastpage883
    treeJournal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian