YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 007::page 1345
    Author:
    Li, Qiang
    ,
    Farmer, David M.
    DOI: 10.1175/2011JPO4587.1
    Publisher: American Meteorological Society
    Abstract: ime series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.
    • Download: (2.508Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214065
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLi, Qiang
    contributor authorFarmer, David M.
    date accessioned2017-06-09T16:40:51Z
    date available2017-06-09T16:40:51Z
    date copyright2011/07/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-72100.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214065
    description abstractime series observations of nonlinear internal waves in the deep basin of the South China Sea are used to evaluate mechanisms for their generation and evolution. Internal tides are generated by tidal currents over ridges in Luzon Strait and steepen as they travel west, subsequently generating high-frequency nonlinear waves. Although nonlinear internal waves appear repeatedly on the western slopes of the South China Sea, their appearance in the deep basin is intermittent and more closely related to the amplitude of the semidiurnal than the predominant diurnal tidal current in Luzon Strait. As the internal tide propagates westward, it evolves under the influence of nonlinearity, rotation, and nonhydrostatic dispersion. The interaction between nonlinearity and rotation transforms the internal tide into a parabolic or corner shape. A fully nonlinear two-layer internal wave model explains the observed characteristics of internal tide evolution in the deep basin for different representative forcing conditions and allows assessment of differences between the fully and weakly nonlinear descriptions. Matching this model to a wave generation solution for representative topography in Luzon Strait leads to predictions in the deep basin consistent with observations. Separation of the eastern and western ridges is close to the internal semidiurnal tidal wavelength, contributing to intensification of the westward propagating semidiurnal component. Doppler effects of internal tide generation, when combined with a steady background flow, suggest an explanation for the apparent suppression of nonlinear wave generation during periods of westward intrusion of the Kuroshio.
    publisherAmerican Meteorological Society
    titleThe Generation and Evolution of Nonlinear Internal Waves in the Deep Basin of the South China Sea
    typeJournal Paper
    journal volume41
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2011JPO4587.1
    journal fristpage1345
    journal lastpage1363
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian