YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vortex Merger in Oceanic Tripoles

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 006::page 1239
    Author:
    Rodríguez-Marroyo, Rocío
    ,
    Viúdez, Álvaro
    ,
    Ruiz, Simon
    DOI: 10.1175/2011JPO4582.1
    Publisher: American Meteorological Society
    Abstract: new type of vortex merger is experimentally reported and numerically investigated. The merging process of two anticyclones under the influence of a cyclone (a three-vortex interaction) was observed in sea surface height (SSH) altimetry maps south of the Canary Islands. This three-vortex interaction is investigated using a process-oriented three-dimensional (3D), Boussinesq, and f-plane numerical model that explicitly conserves potential vorticity (PV) on isopycnals. The initial conditions consist of three static and inertially stable baroclinic vortices: two anticyclones and one cyclone. The vortex cores form a triangle in a configuration similar to that found south of the Canary Islands. The numerical results show, in agreement with SSH observations, that two corotating vortices, sufficiently close to each other and in presence of a third counterrotating vortex, merge, leading to a new elongated vortex, which couples with the counterrotating vortex, forming a dipole. Thus, the merging process occurred south of the Canary Islands is consistent with simplified vortex dynamics (basically PV conservation). The merging process depends on the initial PV density extrema, vertical extent, and the angle spanned by the corotating vortices. It is found that the presence of the third counterrotating vortex importantly affects the critical angle of merger and the processes of axisymmetrization and filamentation associated with the two corotating merging vortices. The torque exerted by the counterrotating vortex on the two corotating vortices delays, but does not prevent, their merger.
    • Download: (2.632Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vortex Merger in Oceanic Tripoles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4214061
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorRodríguez-Marroyo, Rocío
    contributor authorViúdez, Álvaro
    contributor authorRuiz, Simon
    date accessioned2017-06-09T16:40:50Z
    date available2017-06-09T16:40:50Z
    date copyright2011/06/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-72096.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4214061
    description abstractnew type of vortex merger is experimentally reported and numerically investigated. The merging process of two anticyclones under the influence of a cyclone (a three-vortex interaction) was observed in sea surface height (SSH) altimetry maps south of the Canary Islands. This three-vortex interaction is investigated using a process-oriented three-dimensional (3D), Boussinesq, and f-plane numerical model that explicitly conserves potential vorticity (PV) on isopycnals. The initial conditions consist of three static and inertially stable baroclinic vortices: two anticyclones and one cyclone. The vortex cores form a triangle in a configuration similar to that found south of the Canary Islands. The numerical results show, in agreement with SSH observations, that two corotating vortices, sufficiently close to each other and in presence of a third counterrotating vortex, merge, leading to a new elongated vortex, which couples with the counterrotating vortex, forming a dipole. Thus, the merging process occurred south of the Canary Islands is consistent with simplified vortex dynamics (basically PV conservation). The merging process depends on the initial PV density extrema, vertical extent, and the angle spanned by the corotating vortices. It is found that the presence of the third counterrotating vortex importantly affects the critical angle of merger and the processes of axisymmetrization and filamentation associated with the two corotating merging vortices. The torque exerted by the counterrotating vortex on the two corotating vortices delays, but does not prevent, their merger.
    publisherAmerican Meteorological Society
    titleVortex Merger in Oceanic Tripoles
    typeJournal Paper
    journal volume41
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2011JPO4582.1
    journal fristpage1239
    journal lastpage1251
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian