YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Path-Average Rainfall Estimation from Optical Extinction Measurements Using a Large-Aperture Scintillometer

    Source: Journal of Hydrometeorology:;2011:;Volume( 012 ):;issue: 005::page 955
    Author:
    Uijlenhoet, R.
    ,
    Cohard, J.-M.
    ,
    Gosset, M.
    DOI: 10.1175/2011JHM1350.1
    Publisher: American Meteorological Society
    Abstract: he potential of a near-infrared large-aperture boundary layer scintillometer as path-average rain gauge is investigated. The instrument was installed over a 2.4-km path in Benin as part of the African Monsoon Multidisciplinary Analysis (AMMA) Enhanced Observation Period during 2006 and 2007. Measurements of the one-minute-average received signal intensity were collected for 6 rainfall events during the dry season and 16 events during the rainy season. Using estimates of the signal base level just before the onset of the rainfall events, the optical extinction coefficient is estimated from the path-integrated attenuation for each minute. The corresponding path-average rain rates are computed using a power-law relation between the optical extinction coefficient and rain rate obtained from measurements of raindrop size distributions with an optical spectropluviometer and a scaling-law formalism for describing raindrop size distribution variations. Comparisons of five-minute rainfall estimates with measurements from two nearby rain gauges show that the temporal dynamics are generally captured well by the scintillometer. However, the instrument has a tendency to underestimate rain rates and event total rain amounts with respect to the gauges. It is shown that this underestimation can be explained partly by systematic differences between the actual and the employed mean power-law relation between rain rate and specific attenuation, partly by unresolved spatial and temporal rainfall variations along the scintillometer path. Occasionally, the signal may even be lost completely. It is demonstrated that if these effects are properly accounted for by employing appropriate relations between rain rate and specific attenuation and by adapting the pathlength to the local rainfall climatology, scintillometer-based rainfall estimates can be within 20% of those estimated using rain gauges. These results demonstrate the potential of large-aperture scintillometers to estimate path-average rain rates at hydrologically relevant scales.
    • Download: (1.842Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Path-Average Rainfall Estimation from Optical Extinction Measurements Using a Large-Aperture Scintillometer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213983
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorUijlenhoet, R.
    contributor authorCohard, J.-M.
    contributor authorGosset, M.
    date accessioned2017-06-09T16:40:35Z
    date available2017-06-09T16:40:35Z
    date copyright2011/10/01
    date issued2011
    identifier issn1525-755X
    identifier otherams-72025.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213983
    description abstracthe potential of a near-infrared large-aperture boundary layer scintillometer as path-average rain gauge is investigated. The instrument was installed over a 2.4-km path in Benin as part of the African Monsoon Multidisciplinary Analysis (AMMA) Enhanced Observation Period during 2006 and 2007. Measurements of the one-minute-average received signal intensity were collected for 6 rainfall events during the dry season and 16 events during the rainy season. Using estimates of the signal base level just before the onset of the rainfall events, the optical extinction coefficient is estimated from the path-integrated attenuation for each minute. The corresponding path-average rain rates are computed using a power-law relation between the optical extinction coefficient and rain rate obtained from measurements of raindrop size distributions with an optical spectropluviometer and a scaling-law formalism for describing raindrop size distribution variations. Comparisons of five-minute rainfall estimates with measurements from two nearby rain gauges show that the temporal dynamics are generally captured well by the scintillometer. However, the instrument has a tendency to underestimate rain rates and event total rain amounts with respect to the gauges. It is shown that this underestimation can be explained partly by systematic differences between the actual and the employed mean power-law relation between rain rate and specific attenuation, partly by unresolved spatial and temporal rainfall variations along the scintillometer path. Occasionally, the signal may even be lost completely. It is demonstrated that if these effects are properly accounted for by employing appropriate relations between rain rate and specific attenuation and by adapting the pathlength to the local rainfall climatology, scintillometer-based rainfall estimates can be within 20% of those estimated using rain gauges. These results demonstrate the potential of large-aperture scintillometers to estimate path-average rain rates at hydrologically relevant scales.
    publisherAmerican Meteorological Society
    titlePath-Average Rainfall Estimation from Optical Extinction Measurements Using a Large-Aperture Scintillometer
    typeJournal Paper
    journal volume12
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2011JHM1350.1
    journal fristpage955
    journal lastpage972
    treeJournal of Hydrometeorology:;2011:;Volume( 012 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian