YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forcing of the Arctic Oscillation by Eurasian Snow Cover

    Source: Journal of Climate:;2011:;volume( 024 ):;issue: 024::page 6528
    Author:
    Allen, Robert J.
    ,
    Zender, Charles S.
    DOI: 10.1175/2011JCLI4157.1
    Publisher: American Meteorological Society
    Abstract: hroughout much of the latter half of the twentieth century, the dominant mode of Northern Hemisphere (NH) extratropical wintertime circulation variability?the Arctic Oscillation (AO)?exhibited a positive trend, with decreasing high-latitude sea level pressure (SLP) and increasing midlatitude SLP. General circulation models (GCMs) show that this trend is related to several factors, including North Atlantic SSTs, greenhouse gas/ozone-induced stratospheric cooling, and warming of the Indo-Pacific warm pool. Over the last approximately two decades, however, the AO has been decreasing, with 2009/10 featuring the most negative AO since 1900. Observational and idealized modeling studies suggest that snow cover, particularly over Eurasia, may be important. An observed snow?AO mechanism also exists, involving the vertical propagation of a Rossby wave train into the stratosphere, which induces a negative AO response that couples to the troposphere. Similar to other GCMs, the authors show that transient simulations with the Community Atmosphere Model, version 3 (CAM3) yield a snow?AO relationship inconsistent with observations and dissimilar AO trends. However, Eurasian snow cover and its interannual variability are significantly underestimated. When the albedo effects of snow cover are prescribed in CAM3 (CAM PS) using satellite-based snow cover fraction data, a snow?AO relationship similar to observations develops. Furthermore, the late-twentieth-century increase in the AO, and particularly the recent decrease, is reproduced by CAM PS. The authors therefore conclude that snow cover has helped force the observed AO trends and that it may play an important role in future AO trends.
    • Download: (1.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forcing of the Arctic Oscillation by Eurasian Snow Cover

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213895
    Collections
    • Journal of Climate

    Show full item record

    contributor authorAllen, Robert J.
    contributor authorZender, Charles S.
    date accessioned2017-06-09T16:40:20Z
    date available2017-06-09T16:40:20Z
    date copyright2011/12/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-71947.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213895
    description abstracthroughout much of the latter half of the twentieth century, the dominant mode of Northern Hemisphere (NH) extratropical wintertime circulation variability?the Arctic Oscillation (AO)?exhibited a positive trend, with decreasing high-latitude sea level pressure (SLP) and increasing midlatitude SLP. General circulation models (GCMs) show that this trend is related to several factors, including North Atlantic SSTs, greenhouse gas/ozone-induced stratospheric cooling, and warming of the Indo-Pacific warm pool. Over the last approximately two decades, however, the AO has been decreasing, with 2009/10 featuring the most negative AO since 1900. Observational and idealized modeling studies suggest that snow cover, particularly over Eurasia, may be important. An observed snow?AO mechanism also exists, involving the vertical propagation of a Rossby wave train into the stratosphere, which induces a negative AO response that couples to the troposphere. Similar to other GCMs, the authors show that transient simulations with the Community Atmosphere Model, version 3 (CAM3) yield a snow?AO relationship inconsistent with observations and dissimilar AO trends. However, Eurasian snow cover and its interannual variability are significantly underestimated. When the albedo effects of snow cover are prescribed in CAM3 (CAM PS) using satellite-based snow cover fraction data, a snow?AO relationship similar to observations develops. Furthermore, the late-twentieth-century increase in the AO, and particularly the recent decrease, is reproduced by CAM PS. The authors therefore conclude that snow cover has helped force the observed AO trends and that it may play an important role in future AO trends.
    publisherAmerican Meteorological Society
    titleForcing of the Arctic Oscillation by Eurasian Snow Cover
    typeJournal Paper
    journal volume24
    journal issue24
    journal titleJournal of Climate
    identifier doi10.1175/2011JCLI4157.1
    journal fristpage6528
    journal lastpage6539
    treeJournal of Climate:;2011:;volume( 024 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian