YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Seasonal Precipitation Forecasts for the Asian Monsoon Using 16 Atmosphere–Ocean Coupled Models. Part I: Climatology

    Source: Journal of Climate:;2011:;volume( 025 ):;issue: 001::page 39
    Author:
    Kumar, Vinay
    ,
    Krishnamurti, T. N.
    DOI: 10.1175/2011JCLI4125.1
    Publisher: American Meteorological Society
    Abstract: he goal of this study is to utilize several recent developments on rainfall data collection, downscaling of available climate models, training and forecasts from such models within the framework of a multimodel superensemble, and first a detailed examination of the seasonal climatology. The unique aspect of this study is that it became possible to use the forecast results from as many as 16 state-of-the-art coupled climate models. A downscaling component, with respect to observed rainfall estimates, uses a very dense Asian rain gauge network. This feature enables the forecasts of each model to be bias corrected to a common 25-km resolution. The downscaling statistics for each model, at each grid location, are developed during a training phase of the model forecasts. This is done wherever the observed rainfall estimates are available. In the ?forecast phase,? the forecasts from all of the member models use the downscaling coefficients of the ?training phase.? The downscaling and the extraction of the superensemble weights are done during the training phase. This makes use of the cross-validation principle. This means that the season to be forecasted is left out of the entire forecast dataset. Thus all of the statistics for downscaling and the superensemble construction are done separately for the forecasts of each season for all the years. The forecast phase is the season that is being forecast, where the aforementioned statistics are deployed for constructing the final downscaled superensemble.These forecasts are next used for the construction of a multimodel superensemble. The geographical distributions of the downscaling coefficients provide a first look at the systematic errors of the member model forecasts. This combination of multimodels, the vast rain gauge dataset, the downscaling, and the superensemble provides a major improvement for the rainfall climatology and anomalies for the forecast phase. One of the main results of this paper is on the improvement of rainfall climatology of the member models. The downscaled multimodel superensemble shows a correlation of nearly 1.0 with respect to the observed climatology. This high skill is important for addressing the rainfall anomaly forecasts, which are defined in terms of departures from the observed (rather than a model based) climatology. This first part of the paper provides a description of the member models, the length of the training and forecast phases, the sensitivity of results as the numbers of forecast models are increased, and the skills of the downscaled climatology forecasts.
    • Download: (8.919Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Seasonal Precipitation Forecasts for the Asian Monsoon Using 16 Atmosphere–Ocean Coupled Models. Part I: Climatology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213872
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKumar, Vinay
    contributor authorKrishnamurti, T. N.
    date accessioned2017-06-09T16:40:17Z
    date available2017-06-09T16:40:17Z
    date copyright2012/01/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-71926.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213872
    description abstracthe goal of this study is to utilize several recent developments on rainfall data collection, downscaling of available climate models, training and forecasts from such models within the framework of a multimodel superensemble, and first a detailed examination of the seasonal climatology. The unique aspect of this study is that it became possible to use the forecast results from as many as 16 state-of-the-art coupled climate models. A downscaling component, with respect to observed rainfall estimates, uses a very dense Asian rain gauge network. This feature enables the forecasts of each model to be bias corrected to a common 25-km resolution. The downscaling statistics for each model, at each grid location, are developed during a training phase of the model forecasts. This is done wherever the observed rainfall estimates are available. In the ?forecast phase,? the forecasts from all of the member models use the downscaling coefficients of the ?training phase.? The downscaling and the extraction of the superensemble weights are done during the training phase. This makes use of the cross-validation principle. This means that the season to be forecasted is left out of the entire forecast dataset. Thus all of the statistics for downscaling and the superensemble construction are done separately for the forecasts of each season for all the years. The forecast phase is the season that is being forecast, where the aforementioned statistics are deployed for constructing the final downscaled superensemble.These forecasts are next used for the construction of a multimodel superensemble. The geographical distributions of the downscaling coefficients provide a first look at the systematic errors of the member model forecasts. This combination of multimodels, the vast rain gauge dataset, the downscaling, and the superensemble provides a major improvement for the rainfall climatology and anomalies for the forecast phase. One of the main results of this paper is on the improvement of rainfall climatology of the member models. The downscaled multimodel superensemble shows a correlation of nearly 1.0 with respect to the observed climatology. This high skill is important for addressing the rainfall anomaly forecasts, which are defined in terms of departures from the observed (rather than a model based) climatology. This first part of the paper provides a description of the member models, the length of the training and forecast phases, the sensitivity of results as the numbers of forecast models are increased, and the skills of the downscaled climatology forecasts.
    publisherAmerican Meteorological Society
    titleImproved Seasonal Precipitation Forecasts for the Asian Monsoon Using 16 Atmosphere–Ocean Coupled Models. Part I: Climatology
    typeJournal Paper
    journal volume25
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/2011JCLI4125.1
    journal fristpage39
    journal lastpage64
    treeJournal of Climate:;2011:;volume( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian