YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance

    Source: Journal of Climate:;2011:;volume( 025 ):;issue: 004::page 1157
    Author:
    Yoshimori, Masakazu
    ,
    Abe-Ouchi, Ayako
    DOI: 10.1175/2011JCLI4011.1
    Publisher: American Meteorological Society
    Abstract: he many studies investigating the future change of the Greenland Ice Sheet surface mass balance from climate model output exhibit a wide range of projections. This study makes projections from the Coupled Model Intercomparison Project phase 3 models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report and explores the underlying physical processes behind their spread. The projections are made for three Special Report on Emissions Scenarios, B1, A1B, and A2, with a focused analysis on the A1B scenario. The estimate in the study suggests that about 60% of the intermodel difference in the twenty-first-century ablation rate change under the A1B scenario is accounted for by the global annual mean temperature change. In the current study, other processes responsible for the spread in model projections are investigated after excluding this global effect. A negative correlation (?0.60) was found between the simulated summer temperature bias over the Greenland Ice Sheet under present-day conditions and the ablation rate increase during the twenty-first century, partly because maximum warming over ice is approximately limited to the melting temperature. Models with relatively larger ablation rate increases during the twenty-first century exhibit greater warming with a greater reduction in sea ice cover. The authors found that these models also simulate relatively cooler summer conditions in high latitudes with more sea ice cover in the late twentieth century, suggesting the importance of sea ice feedbacks. Also, an anticorrelation (?0.75) is found between weakening of the Atlantic meridional overturning circulation and the ablation rate increase during the twenty-first century. The relation in the model spread between the twenty-first-century ablation change and the late twentieth-century climate conditions is then used to investigate the impact of model bias on the multimodel ensemble of projections. The result suggests that the models? underestimation of present-day sea ice concentration near the coast of Greenland may cause an underestimation of future Greenland Ice Sheet ablation rate increase in the ensemble projection. These results emphasize the importance of correctly simulating present-day conditions and understanding the underlying multiple physical processes behind the intermodel difference to reduce the uncertainty in future projections.
    • Download: (5.428Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213799
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYoshimori, Masakazu
    contributor authorAbe-Ouchi, Ayako
    date accessioned2017-06-09T16:40:03Z
    date available2017-06-09T16:40:03Z
    date copyright2012/02/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-71861.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213799
    description abstracthe many studies investigating the future change of the Greenland Ice Sheet surface mass balance from climate model output exhibit a wide range of projections. This study makes projections from the Coupled Model Intercomparison Project phase 3 models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report and explores the underlying physical processes behind their spread. The projections are made for three Special Report on Emissions Scenarios, B1, A1B, and A2, with a focused analysis on the A1B scenario. The estimate in the study suggests that about 60% of the intermodel difference in the twenty-first-century ablation rate change under the A1B scenario is accounted for by the global annual mean temperature change. In the current study, other processes responsible for the spread in model projections are investigated after excluding this global effect. A negative correlation (?0.60) was found between the simulated summer temperature bias over the Greenland Ice Sheet under present-day conditions and the ablation rate increase during the twenty-first century, partly because maximum warming over ice is approximately limited to the melting temperature. Models with relatively larger ablation rate increases during the twenty-first century exhibit greater warming with a greater reduction in sea ice cover. The authors found that these models also simulate relatively cooler summer conditions in high latitudes with more sea ice cover in the late twentieth century, suggesting the importance of sea ice feedbacks. Also, an anticorrelation (?0.75) is found between weakening of the Atlantic meridional overturning circulation and the ablation rate increase during the twenty-first century. The relation in the model spread between the twenty-first-century ablation change and the late twentieth-century climate conditions is then used to investigate the impact of model bias on the multimodel ensemble of projections. The result suggests that the models? underestimation of present-day sea ice concentration near the coast of Greenland may cause an underestimation of future Greenland Ice Sheet ablation rate increase in the ensemble projection. These results emphasize the importance of correctly simulating present-day conditions and understanding the underlying multiple physical processes behind the intermodel difference to reduce the uncertainty in future projections.
    publisherAmerican Meteorological Society
    titleSources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance
    typeJournal Paper
    journal volume25
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/2011JCLI4011.1
    journal fristpage1157
    journal lastpage1175
    treeJournal of Climate:;2011:;volume( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian