YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of the Stratospheric Circulation to the Latitude of Thermal Surface Forcing

    Source: Journal of Climate:;2011:;volume( 024 ):;issue: 020::page 5397
    Author:
    Winter, Barbara
    ,
    Bourqui, Michel S.
    DOI: 10.1175/2011JCLI4006.1
    Publisher: American Meteorological Society
    Abstract: sing the chemistry climate model Intermediate General Circulation Model?Fast Stratospheric Ozone Chemistry (IGCM-FASTOC), the authors analyze the response in the Northern Hemisphere winter stratosphere to idealized thermal forcing imposed at the surface. The forcing is a 2-K temperature anomaly added to the control surface temperature at all grid points within a latitudinal window of 10° or 30°. The bandwise forcing is applied systematically throughout all latitudes of the Northern Hemisphere. Thermal forcing applied anywhere equatorward of 20°N, or continuously from the equator to 30°N, increases planetary-wave generation in the troposphere and enhances the flux of wave activity propagating vertically into the stratosphere. Consequently, a greater flux of wave activity breaks in the polar vortex, increasing the Brewer?Dobson circulation and leading to a warm anomaly in the polar stratosphere. Ozone concentration increases at high latitudes and decreases at low latitudes. Thermal surface forcing imposed between 30° and 60°N has the reverse effect?decreased planetary-wave generation in the lower troposphere and reduced vertically propagating wave flux entering the stratosphere?and leads to a stronger and colder vortex. Thermal forcing applied poleward of 60°N has little effect on the tropospheric mean state but nonetheless decreases the planetary-scale eddy heat flux from the surface to the tropopause, resulting in a sufficient decrease of the vertical flux of wave activity for the vortex to be anomalously strong and cold. When surface forcing is imposed only poleward of 30°N, ozone concentration decreases at high latitudes but is not affected at low latitudes. Combining the forcing in an equatorial and an extratropical band leads to a response similar to that of the equatorial forcing, demonstrating that the subtropical surface temperature changes determine the sign of the surface-driven response in the vortex.
    • Download: (8.665Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of the Stratospheric Circulation to the Latitude of Thermal Surface Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213797
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWinter, Barbara
    contributor authorBourqui, Michel S.
    date accessioned2017-06-09T16:40:02Z
    date available2017-06-09T16:40:02Z
    date copyright2011/10/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-71859.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213797
    description abstractsing the chemistry climate model Intermediate General Circulation Model?Fast Stratospheric Ozone Chemistry (IGCM-FASTOC), the authors analyze the response in the Northern Hemisphere winter stratosphere to idealized thermal forcing imposed at the surface. The forcing is a 2-K temperature anomaly added to the control surface temperature at all grid points within a latitudinal window of 10° or 30°. The bandwise forcing is applied systematically throughout all latitudes of the Northern Hemisphere. Thermal forcing applied anywhere equatorward of 20°N, or continuously from the equator to 30°N, increases planetary-wave generation in the troposphere and enhances the flux of wave activity propagating vertically into the stratosphere. Consequently, a greater flux of wave activity breaks in the polar vortex, increasing the Brewer?Dobson circulation and leading to a warm anomaly in the polar stratosphere. Ozone concentration increases at high latitudes and decreases at low latitudes. Thermal surface forcing imposed between 30° and 60°N has the reverse effect?decreased planetary-wave generation in the lower troposphere and reduced vertically propagating wave flux entering the stratosphere?and leads to a stronger and colder vortex. Thermal forcing applied poleward of 60°N has little effect on the tropospheric mean state but nonetheless decreases the planetary-scale eddy heat flux from the surface to the tropopause, resulting in a sufficient decrease of the vertical flux of wave activity for the vortex to be anomalously strong and cold. When surface forcing is imposed only poleward of 30°N, ozone concentration decreases at high latitudes but is not affected at low latitudes. Combining the forcing in an equatorial and an extratropical band leads to a response similar to that of the equatorial forcing, demonstrating that the subtropical surface temperature changes determine the sign of the surface-driven response in the vortex.
    publisherAmerican Meteorological Society
    titleSensitivity of the Stratospheric Circulation to the Latitude of Thermal Surface Forcing
    typeJournal Paper
    journal volume24
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/2011JCLI4006.1
    journal fristpage5397
    journal lastpage5415
    treeJournal of Climate:;2011:;volume( 024 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian