YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach

    Source: Journal of Climate:;2011:;volume( 024 ):;issue: 017::page 4644
    Author:
    Hill, Kevin A.
    ,
    Lackmann, Gary M.
    DOI: 10.1175/2011JCLI3761.1
    Publisher: American Meteorological Society
    Abstract: comprehensive analysis of tropical cyclone (TC) intensity change in a warming climate is undertaken with high-resolution (6- and 2-km grid spacing) idealized simulations using the Weather Research and Forecasting (WRF) model. With the goal of isolating the influence of thermodynamic aspects of climate change on maximum hurricane intensity, an idealized TC is placed within a quiescent, horizontally uniform tropical environment computed from averaged reanalysis data for the tropical Atlantic Ocean. The analyzed tropical environment is used for control simulations. Changes between the periods 1990?99 and 2090?99 are computed using output from 13 GCMs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), for the A1B, A2, and B1 emissions scenarios. These changes are then added to the reanalysis-derived initial and boundary conditions used in the control simulations. Some processes known to impact TC intensity, such as environmental vertical wind shear and sea surface wake cooling, are not considered in this study. Future TC intensity increased for 75 of 78 future simulations using 6-km grid length, with a 9% (~8 hPa) average increase in central surface-pressure deficit. For the 2-km simulations, the average increase was 14% (~14 hPa). The depth of the TC secondary circulation increases in future simulations, consistent with an increase in the height of the freezing level and tropopause. Inner-core precipitation increases of 10%?30% are found for future simulations, with large sensitivity to the emission scenario. The increase in precipitation is consistent with a stronger potential vorticity tower, a warmer eye, and lower central pressure. Enhanced upper-tropospheric warming in the GCM environment is shown to be an important mitigating influence on TC intensity change but is also shown to exhibit large uncertainty in GCM projections.
    • Download: (3.653Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213708
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHill, Kevin A.
    contributor authorLackmann, Gary M.
    date accessioned2017-06-09T16:39:47Z
    date available2017-06-09T16:39:47Z
    date copyright2011/09/01
    date issued2011
    identifier issn0894-8755
    identifier otherams-71779.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213708
    description abstractcomprehensive analysis of tropical cyclone (TC) intensity change in a warming climate is undertaken with high-resolution (6- and 2-km grid spacing) idealized simulations using the Weather Research and Forecasting (WRF) model. With the goal of isolating the influence of thermodynamic aspects of climate change on maximum hurricane intensity, an idealized TC is placed within a quiescent, horizontally uniform tropical environment computed from averaged reanalysis data for the tropical Atlantic Ocean. The analyzed tropical environment is used for control simulations. Changes between the periods 1990?99 and 2090?99 are computed using output from 13 GCMs from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), for the A1B, A2, and B1 emissions scenarios. These changes are then added to the reanalysis-derived initial and boundary conditions used in the control simulations. Some processes known to impact TC intensity, such as environmental vertical wind shear and sea surface wake cooling, are not considered in this study. Future TC intensity increased for 75 of 78 future simulations using 6-km grid length, with a 9% (~8 hPa) average increase in central surface-pressure deficit. For the 2-km simulations, the average increase was 14% (~14 hPa). The depth of the TC secondary circulation increases in future simulations, consistent with an increase in the height of the freezing level and tropopause. Inner-core precipitation increases of 10%?30% are found for future simulations, with large sensitivity to the emission scenario. The increase in precipitation is consistent with a stronger potential vorticity tower, a warmer eye, and lower central pressure. Enhanced upper-tropospheric warming in the GCM environment is shown to be an important mitigating influence on TC intensity change but is also shown to exhibit large uncertainty in GCM projections.
    publisherAmerican Meteorological Society
    titleThe Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach
    typeJournal Paper
    journal volume24
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/2011JCLI3761.1
    journal fristpage4644
    journal lastpage4661
    treeJournal of Climate:;2011:;volume( 024 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian