YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 008::page 1749
    Author:
    Eckermann, Stephen D.
    DOI: 10.1175/2011JAS3684.1
    Publisher: American Meteorological Society
    Abstract: straightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the example herein, a single wave) within each grid box. Deterministic discretizations of source-level momentum flux spectra using a fixed spectrum of many waves with predefined phase speeds are replaced by sampling these source spectra stochastically using waves with randomly assigned phase speeds. Using simple conversion formulas, it is shown that time-mean wave-induced drag, diffusion, and heating-rate profiles identical to those from the deterministic scheme are produced by the stochastic analog. Furthermore, in these examples the need for bulk intermittency factors of small value is largely obviated through the explicit incorporation of stochastic intermittency into the scheme. When implemented in a GCM, the single-wave stochastic analog of an existing deterministic scheme reproduces almost identical time-mean middle-atmosphere climate and drag as its deterministic antecedent but with an order of magnitude reduction in computational expense. The stochastically parameterized drag is also accompanied by inherent variability about the time-mean profile that forces the smallest space?time scales of the GCM. Studies of mean GCM kinetic energy spectra show that this additional stochastic forcing does not lead to excessive increases in dynamical variability at these smallest GCM scales. The results show that the expensive deterministic schemes currently used in GCMs are easily modified and replaced by cheap stochastic analogs without any obvious deleterious impacts on GCM climate or variability, while offering potential advantages of computational savings, reduction of systematic climate biases, and greater and more realistic ensemble spread.
    • Download: (1.965Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Explicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213648
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorEckermann, Stephen D.
    date accessioned2017-06-09T16:39:34Z
    date available2017-06-09T16:39:34Z
    date copyright2011/08/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-71724.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213648
    description abstractstraightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the example herein, a single wave) within each grid box. Deterministic discretizations of source-level momentum flux spectra using a fixed spectrum of many waves with predefined phase speeds are replaced by sampling these source spectra stochastically using waves with randomly assigned phase speeds. Using simple conversion formulas, it is shown that time-mean wave-induced drag, diffusion, and heating-rate profiles identical to those from the deterministic scheme are produced by the stochastic analog. Furthermore, in these examples the need for bulk intermittency factors of small value is largely obviated through the explicit incorporation of stochastic intermittency into the scheme. When implemented in a GCM, the single-wave stochastic analog of an existing deterministic scheme reproduces almost identical time-mean middle-atmosphere climate and drag as its deterministic antecedent but with an order of magnitude reduction in computational expense. The stochastically parameterized drag is also accompanied by inherent variability about the time-mean profile that forces the smallest space?time scales of the GCM. Studies of mean GCM kinetic energy spectra show that this additional stochastic forcing does not lead to excessive increases in dynamical variability at these smallest GCM scales. The results show that the expensive deterministic schemes currently used in GCMs are easily modified and replaced by cheap stochastic analogs without any obvious deleterious impacts on GCM climate or variability, while offering potential advantages of computational savings, reduction of systematic climate biases, and greater and more realistic ensemble spread.
    publisherAmerican Meteorological Society
    titleExplicitly Stochastic Parameterization of Nonorographic Gravity Wave Drag
    typeJournal Paper
    journal volume68
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2011JAS3684.1
    journal fristpage1749
    journal lastpage1765
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian