YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box Model Simulations of the Habit-Dependent Aggregation Process

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 006::page 1142
    Author:
    Hashino, Tempei
    ,
    Tripoli, Gregory J.
    DOI: 10.1175/2011JAS3667.1
    Publisher: American Meteorological Society
    Abstract: he purpose of this paper is to assess the prediction of particle properties of aggregates and particle size distributions with the Spectral Ice Habit Prediction System (SHIPS) and to investigate the effects of crystal habits on aggregation process. Aggregation processes of ice particles are critical to the understanding of precipitation and the radiative signatures of cloud systems. Conventional approaches taken in cloud-resolving models (CRMs) are not ideal to study the effects of crystal habits on aggregation processes because the properties of aggregates have to be assumed beforehand. As described in Part III, SHIPS solves the stochastic collection equation along with particle property variables that contain information about crystal habits and maximum dimensions of aggregates. This approach makes it possible to simulate properties of aggregates explicitly and continuously in CRMs according to the crystal habits.The aggregation simulations were implemented in a simple model setup, assuming seven crystal habits and several initial particle size distributions (PSDs). The predicted PSDs showed good agreement with observations after rescaling except for the large-size end. The ice particle properties predicted by the model, such as the mass?dimensional (m-D) relationship and the relationship between diameter of aggregates and number of component crystals in an aggregate, were found to be quantitatively similar to those observed. Furthermore, these predictions were dependent on the initial PSDs and habits. A simple model for the growth of a particle?s maximum dimension was able to simulate the typically observed fractal dimension of aggregates when an observed value of the separation ratio of two particles was used. A detailed analysis of the collection kernel indicates that the m-D relationship unique to each crystal habit has a large impact on the growth rate of aggregates through the cross-sectional area or terminal velocity difference, depending on the initial equivalent particle distribution. A significant decrease in terminal velocity differences was found in the inertial flow regime for all the habits but the constant-density sphere. It led to formation of a local maximum in the collection kernel and, in turn, formed an identifiable mode in the PSDs. Remaining issues that must be addressed in order to improve the aggregation simulation with the quasi-stochastic model are discussed.
    • Download: (1.837Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box Model Simulations of the Habit-Dependent Aggregation Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213642
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHashino, Tempei
    contributor authorTripoli, Gregory J.
    date accessioned2017-06-09T16:39:32Z
    date available2017-06-09T16:39:32Z
    date copyright2011/06/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-71719.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213642
    description abstracthe purpose of this paper is to assess the prediction of particle properties of aggregates and particle size distributions with the Spectral Ice Habit Prediction System (SHIPS) and to investigate the effects of crystal habits on aggregation process. Aggregation processes of ice particles are critical to the understanding of precipitation and the radiative signatures of cloud systems. Conventional approaches taken in cloud-resolving models (CRMs) are not ideal to study the effects of crystal habits on aggregation processes because the properties of aggregates have to be assumed beforehand. As described in Part III, SHIPS solves the stochastic collection equation along with particle property variables that contain information about crystal habits and maximum dimensions of aggregates. This approach makes it possible to simulate properties of aggregates explicitly and continuously in CRMs according to the crystal habits.The aggregation simulations were implemented in a simple model setup, assuming seven crystal habits and several initial particle size distributions (PSDs). The predicted PSDs showed good agreement with observations after rescaling except for the large-size end. The ice particle properties predicted by the model, such as the mass?dimensional (m-D) relationship and the relationship between diameter of aggregates and number of component crystals in an aggregate, were found to be quantitatively similar to those observed. Furthermore, these predictions were dependent on the initial PSDs and habits. A simple model for the growth of a particle?s maximum dimension was able to simulate the typically observed fractal dimension of aggregates when an observed value of the separation ratio of two particles was used. A detailed analysis of the collection kernel indicates that the m-D relationship unique to each crystal habit has a large impact on the growth rate of aggregates through the cross-sectional area or terminal velocity difference, depending on the initial equivalent particle distribution. A significant decrease in terminal velocity differences was found in the inertial flow regime for all the habits but the constant-density sphere. It led to formation of a local maximum in the collection kernel and, in turn, formed an identifiable mode in the PSDs. Remaining issues that must be addressed in order to improve the aggregation simulation with the quasi-stochastic model are discussed.
    publisherAmerican Meteorological Society
    titleThe Spectral Ice Habit Prediction System (SHIPS). Part IV: Box Model Simulations of the Habit-Dependent Aggregation Process
    typeJournal Paper
    journal volume68
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2011JAS3667.1
    journal fristpage1142
    journal lastpage1161
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian