YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part I: The Impact of Large Eddies

    Source: Journal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 010::page 2366
    Author:
    Shpund, J.
    ,
    Pinsky, M.
    ,
    Khain, A.
    DOI: 10.1175/2011JAS3652.1
    Publisher: American Meteorological Society
    Abstract: he effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m ? 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s?1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%?100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.
    • Download: (4.040Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part I: The Impact of Large Eddies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213631
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorShpund, J.
    contributor authorPinsky, M.
    contributor authorKhain, A.
    date accessioned2017-06-09T16:39:30Z
    date available2017-06-09T16:39:30Z
    date copyright2011/10/01
    date issued2011
    identifier issn0022-4928
    identifier otherams-71709.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213631
    description abstracthe effects of large eddies (LE) on the marine boundary layer (MBL) microphysics and thermodynamics is investigated using a 2D Lagrangian model with spectral bin microphysics including effects of sea spray. The 600 m ? 400 m MBL computational area is covered by 3750 adjacent interacting Lagrangian parcels moving in a turbulent-like flow. A turbulent-like velocity field is designed as a sum of a high number of harmonics with random time-dependent amplitudes and different wavelengths including large eddies with scales of several hundred meters. The model explicitly calculates diffusion growth/evaporation, collisions, and sedimentation of droplets forming both as sea spray droplets and background aerosols, as well as aerosol masses within droplets. The turbulent mixing between parcels is explicitly taken into account. Sea spray generation is determined by a source function depending on the background wind speed assumed in the simulations to be equal to 20 m s?1. The results of simulations obtained by taking into account the effects of LE are compared to those obtained under the assumption that the vertical transport of droplets and passive scalars is caused by small-scale turbulent diffusion. Small-scale turbulence diffusion taken alone leads to an unrealistic MBL structure. Nonlocal mixing of the MBL caused by LE leads to the formation of a well-mixed MBL with a vertical structure close to the observed one. LE lead to an increase in the sensible and latent heat surface fluxes by 50%?100% and transport a significant amount of large spray droplets upward. Microphysical processes lead to formation of spray-induced drizzling clouds with cloud base near the 200-m level.
    publisherAmerican Meteorological Society
    titleMicrophysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part I: The Impact of Large Eddies
    typeJournal Paper
    journal volume68
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2011JAS3652.1
    journal fristpage2366
    journal lastpage2384
    treeJournal of the Atmospheric Sciences:;2011:;Volume( 068 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian