YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Examination of the Pressure–Wind Relationship for Intense Tropical Cyclones

    Source: Weather and Forecasting:;2010:;volume( 025 ):;issue: 003::page 895
    Author:
    Kieu, Chanh Q.
    ,
    Chen, Hua
    ,
    Zhang, Da-Lin
    DOI: 10.1175/2010WAF2222344.1
    Publisher: American Meteorological Society
    Abstract: In this study, the dynamical constraints underlining the pressure?wind relationship (PWR) for intense tropical cyclones (TCs) are examined with the particular focus on the physical connections between the maximum surface wind (VMAX) and the minimum sea level pressure (PMIN). Use of the Rankine vortex demonstrates that the frictional forcing in the planetary boundary layer (PBL) could explain a sizeable portion of the linear contributions of VMAX to pressure drops. This contribution becomes increasingly important for intense TCs with small eye sizes, in which the radial inflows in the PBL could no longer be neglected. Furthermore, the inclusion of the tangential wind tendency can make an additional contribution to the pressure drops when coupled with the surface friction. An examination of the double-eyewall configuration reveals that the formation of an outer eyewall or well-organized spiral rainbands complicates the PWR. An analysis of a cloud-resolving simulation of Hurricane Wilma (2005) shows that the outer eyewall could result in the continuous deepening of PMIN even with a constant VMAX. The results presented here suggest that (i) the TC size should be coupled with VMAX rather than being treated as an independent predictor as in the current PWRs, (ii) the TC intensity change should be at least coupled linearly with the radius of VMAX, and (iii) the radial wind in the PBL is of equal importance to the linear contribution of VMAX and its impact should be included in the PWR.
    • Download: (1.489Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Examination of the Pressure–Wind Relationship for Intense Tropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213355
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorKieu, Chanh Q.
    contributor authorChen, Hua
    contributor authorZhang, Da-Lin
    date accessioned2017-06-09T16:38:38Z
    date available2017-06-09T16:38:38Z
    date copyright2010/06/01
    date issued2010
    identifier issn0882-8156
    identifier otherams-71461.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213355
    description abstractIn this study, the dynamical constraints underlining the pressure?wind relationship (PWR) for intense tropical cyclones (TCs) are examined with the particular focus on the physical connections between the maximum surface wind (VMAX) and the minimum sea level pressure (PMIN). Use of the Rankine vortex demonstrates that the frictional forcing in the planetary boundary layer (PBL) could explain a sizeable portion of the linear contributions of VMAX to pressure drops. This contribution becomes increasingly important for intense TCs with small eye sizes, in which the radial inflows in the PBL could no longer be neglected. Furthermore, the inclusion of the tangential wind tendency can make an additional contribution to the pressure drops when coupled with the surface friction. An examination of the double-eyewall configuration reveals that the formation of an outer eyewall or well-organized spiral rainbands complicates the PWR. An analysis of a cloud-resolving simulation of Hurricane Wilma (2005) shows that the outer eyewall could result in the continuous deepening of PMIN even with a constant VMAX. The results presented here suggest that (i) the TC size should be coupled with VMAX rather than being treated as an independent predictor as in the current PWRs, (ii) the TC intensity change should be at least coupled linearly with the radius of VMAX, and (iii) the radial wind in the PBL is of equal importance to the linear contribution of VMAX and its impact should be included in the PWR.
    publisherAmerican Meteorological Society
    titleAn Examination of the Pressure–Wind Relationship for Intense Tropical Cyclones
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleWeather and Forecasting
    identifier doi10.1175/2010WAF2222344.1
    journal fristpage895
    journal lastpage907
    treeWeather and Forecasting:;2010:;volume( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian