YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Short-Term Convective Mode Evolution along Synoptic Boundaries

    Source: Weather and Forecasting:;2010:;volume( 025 ):;issue: 005::page 1430
    Author:
    Dial, Greg L.
    ,
    Racy, Jonathan P.
    ,
    Thompson, Richard L.
    DOI: 10.1175/2010WAF2222315.1
    Publisher: American Meteorological Society
    Abstract: This paper investigates the relationships between short-term convective mode evolution, the orientations of vertical shear and mean wind vectors with respect to the initiating synoptic boundary, the motion of the boundary, and the role of forcing for ascent. The dominant mode of storms (linear, mixed mode, and discrete) was noted 3 h after convective initiation along cold fronts, drylines, or prefrontal troughs. Various shear and mean wind vector orientations relative to the boundary were calculated near the time of initiation. Results indicate a statistical correlation between storm mode at 3 h, the normal components of cloud-layer and deep-layer shear vectors, the boundary-relative mean cloud-layer wind vector, and the type of initiating boundary. Thunderstorms, most of which were initially discrete, tended to evolve more quickly into lines or mixed modes when the normal components of the shear vectors and boundary-relative mean cloud-layer wind vectors were small. There was a tendency for storms to remain discrete for larger normal shear and mean wind components. Smaller normal components of mean cloud-layer wind were associated with a greater likelihood that storms would remain within the zone of linear forcing along the boundary for longer time periods, thereby increasing the potential for upscale linear growth. The residence time of storms along the boundary is also dependent on the speed of the boundary. It was found that the boundary-relative normal component of the mean cloud-layer wind better discriminates between mode types than does simply the ground-relative normal component. The influence of mesoscale forcing for ascent and type of boundary on mode evolution was also investigated. As expected, it was found that the magnitude and nature of the forcing play a role in how storms evolve. For instance, strong linear low-level convergence often contributes to rapid upscale linear growth, especially if the boundary motion relative to the mean cloud-layer wind prevents storms from moving away from the boundary shortly after initiation. In summary, results from this study indicate that, for storms initiated along a synoptic boundary, convective mode evolution is modulated primarily by the residence time of storms within the zone of linear forcing, the nature and magnitude of linear forcing, and secondarily by the normal component of the cloud-layer shear.
    • Download: (2.644Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Short-Term Convective Mode Evolution along Synoptic Boundaries

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213344
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorDial, Greg L.
    contributor authorRacy, Jonathan P.
    contributor authorThompson, Richard L.
    date accessioned2017-06-09T16:38:33Z
    date available2017-06-09T16:38:33Z
    date copyright2010/10/01
    date issued2010
    identifier issn0882-8156
    identifier otherams-71451.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213344
    description abstractThis paper investigates the relationships between short-term convective mode evolution, the orientations of vertical shear and mean wind vectors with respect to the initiating synoptic boundary, the motion of the boundary, and the role of forcing for ascent. The dominant mode of storms (linear, mixed mode, and discrete) was noted 3 h after convective initiation along cold fronts, drylines, or prefrontal troughs. Various shear and mean wind vector orientations relative to the boundary were calculated near the time of initiation. Results indicate a statistical correlation between storm mode at 3 h, the normal components of cloud-layer and deep-layer shear vectors, the boundary-relative mean cloud-layer wind vector, and the type of initiating boundary. Thunderstorms, most of which were initially discrete, tended to evolve more quickly into lines or mixed modes when the normal components of the shear vectors and boundary-relative mean cloud-layer wind vectors were small. There was a tendency for storms to remain discrete for larger normal shear and mean wind components. Smaller normal components of mean cloud-layer wind were associated with a greater likelihood that storms would remain within the zone of linear forcing along the boundary for longer time periods, thereby increasing the potential for upscale linear growth. The residence time of storms along the boundary is also dependent on the speed of the boundary. It was found that the boundary-relative normal component of the mean cloud-layer wind better discriminates between mode types than does simply the ground-relative normal component. The influence of mesoscale forcing for ascent and type of boundary on mode evolution was also investigated. As expected, it was found that the magnitude and nature of the forcing play a role in how storms evolve. For instance, strong linear low-level convergence often contributes to rapid upscale linear growth, especially if the boundary motion relative to the mean cloud-layer wind prevents storms from moving away from the boundary shortly after initiation. In summary, results from this study indicate that, for storms initiated along a synoptic boundary, convective mode evolution is modulated primarily by the residence time of storms within the zone of linear forcing, the nature and magnitude of linear forcing, and secondarily by the normal component of the cloud-layer shear.
    publisherAmerican Meteorological Society
    titleShort-Term Convective Mode Evolution along Synoptic Boundaries
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/2010WAF2222315.1
    journal fristpage1430
    journal lastpage1446
    treeWeather and Forecasting:;2010:;volume( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian