YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Utility of Upper-Boundary Nesting in NWP

    Source: Monthly Weather Review:;2011:;volume( 139 ):;issue: 007::page 2117
    Author:
    McTaggart-Cowan, Ron
    ,
    Girard, Claude
    ,
    Plante, André
    ,
    Desgagné, Michel
    DOI: 10.1175/2010MWR3633.1
    Publisher: American Meteorological Society
    Abstract: he importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions.A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2?5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.
    • Download: (8.961Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Utility of Upper-Boundary Nesting in NWP

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213337
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMcTaggart-Cowan, Ron
    contributor authorGirard, Claude
    contributor authorPlante, André
    contributor authorDesgagné, Michel
    date accessioned2017-06-09T16:38:32Z
    date available2017-06-09T16:38:32Z
    date copyright2011/07/01
    date issued2011
    identifier issn0027-0644
    identifier otherams-71444.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213337
    description abstracthe importance of stratospheric influences for medium-range numerical weather prediction (NWP) of the troposphere has led to increases in the heights of global model domains at operational centers around the world. Grids now routinely extend to 0.1 hPa (approximately 65 km) in these systems, thereby covering the full depth of the stratosphere and the lower portion of the mesosphere. Increasing the vertical extent of higher-resolution limited-area models (LAMs) nested within the global forecasts is problematic because of the computational cost of additional levels and the possibility of inaccuracy or instability in the high-speed stratospheric jets. An upper-boundary nesting (UBN) technique is developed that allows information from high-topped driving grids to influence the evolution of a lower-topped (~10 hPa) LAM integration in a manner analogous to the treatment of lateral boundary conditions.A stratospheric vortex displacement event in the winter of 2007 is used to study the effectiveness of the UBN technique. Tropospheric blocking over Europe leads to the development of an amplifying planetary-scale wave in the lower stratosphere that culminates in an anticyclonic wave break over Asia and a marked increase of wave-1 asymmetry. The rapid evolution of stratospheric potential vorticity (PV) is poorly represented in low-topped models, resulting in PV-induced forecast height errors throughout the depth of the troposphere on time scales as short as 2?5 days. Application of the UBN technique is shown to be an effective way for low-topped configurations to benefit from stratospheric predictability without the problems associated with the inclusion of the stratospheric flow in the higher-resolution model domain. The robustness and relative ease of implementation of the UBN technique may make this computationally inexpensive strategy attractive for a wide range of NWP applications.
    publisherAmerican Meteorological Society
    titleThe Utility of Upper-Boundary Nesting in NWP
    typeJournal Paper
    journal volume139
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/2010MWR3633.1
    journal fristpage2117
    journal lastpage2144
    treeMonthly Weather Review:;2011:;volume( 139 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian