YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Probabilistic Quality and Value of the ENSEMBLES Multimodel Seasonal Forecasts: Comparison with DEMETER

    Source: Monthly Weather Review:;2010:;volume( 139 ):;issue: 002::page 581
    Author:
    Alessandri, Andrea
    ,
    Borrelli, Andrea
    ,
    Navarra, Antonio
    ,
    Arribas, Alberto
    ,
    Déqué, Michel
    ,
    Rogel, Philippe
    ,
    Weisheimer, Antje
    DOI: 10.1175/2010MWR3417.1
    Publisher: American Meteorological Society
    Abstract: The performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER)]. The comparison is carried out over the five seasonal prediction systems (SPSs) that participated in both projects. Since DEMETER, the contributing SPSs have improved in all aspects with the main advancements including the increase in resolution, the better representation of subgrid physical processes, land, sea ice, and greenhouse gas boundary forcing, and the more widespread use of assimilation for ocean initialization. The ENSEMBLES results show an overall enhancement for the prediction of anomalous surface temperature conditions. However, the improvement is quite small and with considerable space?time variations. In the tropics, ENSEMBLES systematically improves the sharpness and the discrimination attributes of the forecasts. Enhancements of the ENSEMBLES resolution attribute are also reported in the tropics for the forecasts started 1 February, 1 May, and 1 November. Our results indicate that, in ENSEMBLES, an increased portion of prediction signal from the single-models effectively contributes to amplify the multimodel forecasts skill. On the other hand, a worsening is shown for the multimodel calibration over the tropics compared to DEMETER. Significant changes are also shown in northern midlatitudes, where the ENSEMBLES multimodel discrimination, resolution, and reliability improve for February, May, and November starting dates. However, the ENSEMBLES multimodel decreases the capability to amplify the performance with respect to the contributing single models for the forecasts started in February, May, and August. This is at least partly due to the reduced overconfidence of the ENSEMBLES single models with respect to the DEMETER counterparts. Provided that they are suitably calibrated beforehand, it is shown that the ENSEMBLES multimodel forecasts represent a step forward for the potential economical value they can supply. A warning for all potential users concerns the need for calibration due to the degraded tropical reliability compared to DEMETER. In addition, the superiority of recalibrating the ENSEMBLES predictions through the discrimination information is shown. Concerning the forecasts started in August, ENSEMBLES exhibits mixed results over both tropics and northern midlatitudes. In this case, the increased potential predictability compared to DEMETER appears to be balanced by the reduction in the independence of the SPSs contributing to ENSEMBLES. Consequently, for the August start dates no clear advantage of using one multimodel system instead of the other can be evidenced.
    • Download: (6.725Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Probabilistic Quality and Value of the ENSEMBLES Multimodel Seasonal Forecasts: Comparison with DEMETER

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213241
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorAlessandri, Andrea
    contributor authorBorrelli, Andrea
    contributor authorNavarra, Antonio
    contributor authorArribas, Alberto
    contributor authorDéqué, Michel
    contributor authorRogel, Philippe
    contributor authorWeisheimer, Antje
    date accessioned2017-06-09T16:38:14Z
    date available2017-06-09T16:38:14Z
    date copyright2011/02/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-71358.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213241
    description abstractThe performance of the new multimodel seasonal prediction system developed in the framework of the European Commission FP7 project called ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) is compared with the results from the previous project [i.e., Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER)]. The comparison is carried out over the five seasonal prediction systems (SPSs) that participated in both projects. Since DEMETER, the contributing SPSs have improved in all aspects with the main advancements including the increase in resolution, the better representation of subgrid physical processes, land, sea ice, and greenhouse gas boundary forcing, and the more widespread use of assimilation for ocean initialization. The ENSEMBLES results show an overall enhancement for the prediction of anomalous surface temperature conditions. However, the improvement is quite small and with considerable space?time variations. In the tropics, ENSEMBLES systematically improves the sharpness and the discrimination attributes of the forecasts. Enhancements of the ENSEMBLES resolution attribute are also reported in the tropics for the forecasts started 1 February, 1 May, and 1 November. Our results indicate that, in ENSEMBLES, an increased portion of prediction signal from the single-models effectively contributes to amplify the multimodel forecasts skill. On the other hand, a worsening is shown for the multimodel calibration over the tropics compared to DEMETER. Significant changes are also shown in northern midlatitudes, where the ENSEMBLES multimodel discrimination, resolution, and reliability improve for February, May, and November starting dates. However, the ENSEMBLES multimodel decreases the capability to amplify the performance with respect to the contributing single models for the forecasts started in February, May, and August. This is at least partly due to the reduced overconfidence of the ENSEMBLES single models with respect to the DEMETER counterparts. Provided that they are suitably calibrated beforehand, it is shown that the ENSEMBLES multimodel forecasts represent a step forward for the potential economical value they can supply. A warning for all potential users concerns the need for calibration due to the degraded tropical reliability compared to DEMETER. In addition, the superiority of recalibrating the ENSEMBLES predictions through the discrimination information is shown. Concerning the forecasts started in August, ENSEMBLES exhibits mixed results over both tropics and northern midlatitudes. In this case, the increased potential predictability compared to DEMETER appears to be balanced by the reduction in the independence of the SPSs contributing to ENSEMBLES. Consequently, for the August start dates no clear advantage of using one multimodel system instead of the other can be evidenced.
    publisherAmerican Meteorological Society
    titleEvaluation of Probabilistic Quality and Value of the ENSEMBLES Multimodel Seasonal Forecasts: Comparison with DEMETER
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2010MWR3417.1
    journal fristpage581
    journal lastpage607
    treeMonthly Weather Review:;2010:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian