YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Displacing Potential Vorticity Structures by the Assimilation of Pseudo-Observations

    Source: Monthly Weather Review:;2010:;volume( 139 ):;issue: 002::page 549
    Author:
    Michel, Yann
    DOI: 10.1175/2010MWR3395.1
    Publisher: American Meteorological Society
    Abstract: Classic formulations of variational data assimilation in amplitude space are not able to directly handle observations that measure the geographical positions of meteorological features like fronts and vortices. These observations can be derived from satellite images, as is already the case for tropical cyclones. Although some advanced data assimilation algorithms have been specifically designed to tackle the problem, a widespread way of dealing with this information is to use so-called bogussing pseudo-observations: user-specified artificial observations are inserted in a traditional data assimilation scheme. At the midlatitudes, there is a relationship between dry intrusions in water vapor images and upper-level potential vorticity structures. Some prior work has also shown that it was possible to automatically identify dry intrusions with tracking algorithms. The difference of positions between model and image dry intrusions could therefore be used as observations of the misplacement of potential vorticity structures. One strategy to achieve the displacement of potential vorticity anomalies is to sample them, and assimilate the values at displaced locations. The uncertainty of these pseudo-observations is left as a tuning parameter to try to make the displacement both effective and robust. A simple one-dimensional assimilation model is used to study the displacement of curves defined by Gaussian humps. The concept is then illustrated in realistic examples from real synoptic systems, where pseudo-observations of potential vorticity are incorporated in a global variational data assimilation scheme. Overall and despite reasonable optimization, the results contain artifacts. This suggests that the use of pseudo-observations to displace identifiable structures is not an effective strategy.
    • Download: (3.140Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Displacing Potential Vorticity Structures by the Assimilation of Pseudo-Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213228
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMichel, Yann
    date accessioned2017-06-09T16:38:12Z
    date available2017-06-09T16:38:12Z
    date copyright2011/02/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-71346.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213228
    description abstractClassic formulations of variational data assimilation in amplitude space are not able to directly handle observations that measure the geographical positions of meteorological features like fronts and vortices. These observations can be derived from satellite images, as is already the case for tropical cyclones. Although some advanced data assimilation algorithms have been specifically designed to tackle the problem, a widespread way of dealing with this information is to use so-called bogussing pseudo-observations: user-specified artificial observations are inserted in a traditional data assimilation scheme. At the midlatitudes, there is a relationship between dry intrusions in water vapor images and upper-level potential vorticity structures. Some prior work has also shown that it was possible to automatically identify dry intrusions with tracking algorithms. The difference of positions between model and image dry intrusions could therefore be used as observations of the misplacement of potential vorticity structures. One strategy to achieve the displacement of potential vorticity anomalies is to sample them, and assimilate the values at displaced locations. The uncertainty of these pseudo-observations is left as a tuning parameter to try to make the displacement both effective and robust. A simple one-dimensional assimilation model is used to study the displacement of curves defined by Gaussian humps. The concept is then illustrated in realistic examples from real synoptic systems, where pseudo-observations of potential vorticity are incorporated in a global variational data assimilation scheme. Overall and despite reasonable optimization, the results contain artifacts. This suggests that the use of pseudo-observations to displace identifiable structures is not an effective strategy.
    publisherAmerican Meteorological Society
    titleDisplacing Potential Vorticity Structures by the Assimilation of Pseudo-Observations
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2010MWR3395.1
    journal fristpage549
    journal lastpage565
    treeMonthly Weather Review:;2010:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian