YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Analysis and Prediction of the 8–9 May 2007 Oklahoma Tornadic Mesoscale Convective System by Assimilating WSR-88D and CASA Radar Data Using 3DVAR

    Source: Monthly Weather Review:;2010:;volume( 139 ):;issue: 001::page 224
    Author:
    Schenkman, Alexander D.
    ,
    Xue, Ming
    ,
    Shapiro, Alan
    ,
    Brewster, Keith
    ,
    Gao, Jidong
    DOI: 10.1175/2010MWR3336.1
    Publisher: American Meteorological Society
    Abstract: The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution numerical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that spawned several tornadoes in central Oklahoma on 8?9 May 2007. The simulation uses a 1000 km ? 1000 km domain with 2-km horizontal grid spacing. The ARPS three-dimensional variational data assimilation (3DVAR) is used to assimilate a variety of data types. All experiments assimilate routine surface and upper-air observations as well as wind profiler and Oklahoma Mesonet data over a 1-h assimilation window. A subset of experiments assimilates radar data. Cloud and hydrometeor fields as well as in-cloud temperature are adjusted based on radar reflectivity data through the ARPS complex cloud analysis procedure. Radar data are assimilated from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network as well as from the Engineering Research Center for Collaborative and Adaptive Sensing of the Atmosphere (CASA) network of four X-band Doppler radars. Three-hour forecasts are launched at the end of the assimilation window. The structure and evolution of the forecast MCS and LEV are markedly better throughout the forecast period in experiments in which radar data are assimilated. The assimilation of CASA radar data in addition to WSR-88D data increases the structural detail of the modeled squall line and MCS at the end of the assimilation window, which appears to yield a slightly better forecast track of the LEV.
    • Download: (5.720Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Analysis and Prediction of the 8–9 May 2007 Oklahoma Tornadic Mesoscale Convective System by Assimilating WSR-88D and CASA Radar Data Using 3DVAR

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213183
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSchenkman, Alexander D.
    contributor authorXue, Ming
    contributor authorShapiro, Alan
    contributor authorBrewster, Keith
    contributor authorGao, Jidong
    date accessioned2017-06-09T16:38:03Z
    date available2017-06-09T16:38:03Z
    date copyright2011/01/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-71305.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213183
    description abstractThe Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution numerical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that spawned several tornadoes in central Oklahoma on 8?9 May 2007. The simulation uses a 1000 km ? 1000 km domain with 2-km horizontal grid spacing. The ARPS three-dimensional variational data assimilation (3DVAR) is used to assimilate a variety of data types. All experiments assimilate routine surface and upper-air observations as well as wind profiler and Oklahoma Mesonet data over a 1-h assimilation window. A subset of experiments assimilates radar data. Cloud and hydrometeor fields as well as in-cloud temperature are adjusted based on radar reflectivity data through the ARPS complex cloud analysis procedure. Radar data are assimilated from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network as well as from the Engineering Research Center for Collaborative and Adaptive Sensing of the Atmosphere (CASA) network of four X-band Doppler radars. Three-hour forecasts are launched at the end of the assimilation window. The structure and evolution of the forecast MCS and LEV are markedly better throughout the forecast period in experiments in which radar data are assimilated. The assimilation of CASA radar data in addition to WSR-88D data increases the structural detail of the modeled squall line and MCS at the end of the assimilation window, which appears to yield a slightly better forecast track of the LEV.
    publisherAmerican Meteorological Society
    titleThe Analysis and Prediction of the 8–9 May 2007 Oklahoma Tornadic Mesoscale Convective System by Assimilating WSR-88D and CASA Radar Data Using 3DVAR
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/2010MWR3336.1
    journal fristpage224
    journal lastpage246
    treeMonthly Weather Review:;2010:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian