YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of the Simulated Tropical Cyclone Inner-Core Size to the Initial Vortex Size

    Source: Monthly Weather Review:;2010:;volume( 138 ):;issue: 011::page 4135
    Author:
    Xu, Jing
    ,
    Wang, Yuqing
    DOI: 10.1175/2010MWR3335.1
    Publisher: American Meteorological Society
    Abstract: The multiply nested, fully compressible, nonhydrostatic tropical cyclone model version 4 (TCM4) is used to examine and understand the sensitivity of the simulated tropical cyclone (TC) inner-core size to its initial vortex size. The results show that although the simulated TC intensity at the mature stage is weakly dependent on the initial vortex size for the general settings, the simulated TC inner-core size is largely determined by the initial vortex size. The initial vortex size is critical to both the energy input from the ocean and the effectiveness of the inward angular momentum transport by the transverse circulation driven by eyewall convection and diabatic heating in spiral rainbands. Strong outer winds in a storm with a large initial size lead to large entropy fluxes to a large radial extent outside the eyewall, favoring the development of active spiral rainbands. Latent heat released in spiral rainbands plays a key role in increasing the low-level radial inflow and accelerating tangential winds outside the eyewall, leading to outward expansion of tangential wind fields and thus increasing the inner-core size of the simulated storm. On the contrary, a storm with a small initial size has weaker outer winds and smaller surface entropy fluxes outside the eyewall and is accompanied by less active spiral rainbands and thus a much slower increase in the inner-core size. The effectiveness of the inward transport of absolute angular momentum to increase the tangential winds outside the eyewall is largely determined by the radial extent of the vertical absolute vorticity, which is shown to be higher in a large size vortex. The relative importance of the initial vortex size and the environmental relative humidity (RH) to the TC inner-core size is also evaluated. It is found that the inner-core size of the simulated storm at the mature stage depends more heavily on the initial vortex size than on the initial RH of the environment.
    • Download: (2.801Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of the Simulated Tropical Cyclone Inner-Core Size to the Initial Vortex Size

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213182
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorXu, Jing
    contributor authorWang, Yuqing
    date accessioned2017-06-09T16:38:03Z
    date available2017-06-09T16:38:03Z
    date copyright2010/11/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-71304.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213182
    description abstractThe multiply nested, fully compressible, nonhydrostatic tropical cyclone model version 4 (TCM4) is used to examine and understand the sensitivity of the simulated tropical cyclone (TC) inner-core size to its initial vortex size. The results show that although the simulated TC intensity at the mature stage is weakly dependent on the initial vortex size for the general settings, the simulated TC inner-core size is largely determined by the initial vortex size. The initial vortex size is critical to both the energy input from the ocean and the effectiveness of the inward angular momentum transport by the transverse circulation driven by eyewall convection and diabatic heating in spiral rainbands. Strong outer winds in a storm with a large initial size lead to large entropy fluxes to a large radial extent outside the eyewall, favoring the development of active spiral rainbands. Latent heat released in spiral rainbands plays a key role in increasing the low-level radial inflow and accelerating tangential winds outside the eyewall, leading to outward expansion of tangential wind fields and thus increasing the inner-core size of the simulated storm. On the contrary, a storm with a small initial size has weaker outer winds and smaller surface entropy fluxes outside the eyewall and is accompanied by less active spiral rainbands and thus a much slower increase in the inner-core size. The effectiveness of the inward transport of absolute angular momentum to increase the tangential winds outside the eyewall is largely determined by the radial extent of the vertical absolute vorticity, which is shown to be higher in a large size vortex. The relative importance of the initial vortex size and the environmental relative humidity (RH) to the TC inner-core size is also evaluated. It is found that the inner-core size of the simulated storm at the mature stage depends more heavily on the initial vortex size than on the initial RH of the environment.
    publisherAmerican Meteorological Society
    titleSensitivity of the Simulated Tropical Cyclone Inner-Core Size to the Initial Vortex Size
    typeJournal Paper
    journal volume138
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/2010MWR3335.1
    journal fristpage4135
    journal lastpage4157
    treeMonthly Weather Review:;2010:;volume( 138 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian