YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Internal Wave Properties Estimated with Moored ADCP Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 006::page 802
    Author:
    Chang, Ming-Huei
    ,
    Lien, Ren-Chieh
    ,
    Yang, Yiing Jang
    ,
    Tang, Tswen Yung
    DOI: 10.1175/2010JTECHO814.1
    Publisher: American Meteorological Society
    Abstract: method is developed to estimate nonlinear internal wave (NLIW) vertical displacement, propagation direction, and propagation speed from single moored acoustic Doppler current profiler (ADCP) velocity observations. The method is applied to three sets of bottom-mounted ADCP measurements taken on the continental slope in the South China Sea in 2006?07. NLIW vertical displacement is computed as the time integration of ADCP vertical velocity observations corrected with the vertical advection of the background flow by the NLIW. NLIW vertical currents displace the background horizontal current and shear by ~150 m. NLIW propagation direction is estimated as the principal direction of the wave-induced horizontal velocity vector, and propagation speed is estimated using the continuity equation in the direction of wave propagation, assuming the wave?s horizontal spatial structure and propagation speed remain constant as the NLIW passes the mooring, typically O(10 min). These NLIW properties are estimated simultaneously and iteratively using the ADCP velocity measurements, corrected for their beam-spreading effect. In most cases, estimates converge to within 3% after four iterations. The proposed method of extracting NLIW properties from velocity measurements is confirmed using NLIWs simulated by the fully nonlinear Dubreil?Jacotin?Long model. Estimates of propagation speed using the ADCP velocity measurements are also in good agreement with those calculated from NLIW arrival times at successive moorings. This study concludes that velocity measurements taken from a single moored ADCP can provide useful estimates of vertical displacement, propagation direction, and propagation speed of large-amplitude NLIWs.
    • Download: (2.471Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Internal Wave Properties Estimated with Moored ADCP Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4213052
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorChang, Ming-Huei
    contributor authorLien, Ren-Chieh
    contributor authorYang, Yiing Jang
    contributor authorTang, Tswen Yung
    date accessioned2017-06-09T16:37:35Z
    date available2017-06-09T16:37:35Z
    date copyright2011/06/01
    date issued2011
    identifier issn0739-0572
    identifier otherams-71188.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4213052
    description abstractmethod is developed to estimate nonlinear internal wave (NLIW) vertical displacement, propagation direction, and propagation speed from single moored acoustic Doppler current profiler (ADCP) velocity observations. The method is applied to three sets of bottom-mounted ADCP measurements taken on the continental slope in the South China Sea in 2006?07. NLIW vertical displacement is computed as the time integration of ADCP vertical velocity observations corrected with the vertical advection of the background flow by the NLIW. NLIW vertical currents displace the background horizontal current and shear by ~150 m. NLIW propagation direction is estimated as the principal direction of the wave-induced horizontal velocity vector, and propagation speed is estimated using the continuity equation in the direction of wave propagation, assuming the wave?s horizontal spatial structure and propagation speed remain constant as the NLIW passes the mooring, typically O(10 min). These NLIW properties are estimated simultaneously and iteratively using the ADCP velocity measurements, corrected for their beam-spreading effect. In most cases, estimates converge to within 3% after four iterations. The proposed method of extracting NLIW properties from velocity measurements is confirmed using NLIWs simulated by the fully nonlinear Dubreil?Jacotin?Long model. Estimates of propagation speed using the ADCP velocity measurements are also in good agreement with those calculated from NLIW arrival times at successive moorings. This study concludes that velocity measurements taken from a single moored ADCP can provide useful estimates of vertical displacement, propagation direction, and propagation speed of large-amplitude NLIWs.
    publisherAmerican Meteorological Society
    titleNonlinear Internal Wave Properties Estimated with Moored ADCP Measurements
    typeJournal Paper
    journal volume28
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2010JTECHO814.1
    journal fristpage802
    journal lastpage815
    treeJournal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian