Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind FarmsSource: Journal of Atmospheric and Oceanic Technology:;2010:;volume( 027 ):;issue: 008::page 1302Author:Barthelmie, R. J.
,
Pryor, S. C.
,
Frandsen, S. T.
,
Hansen, K. S.
,
Schepers, J. G.
,
Rados, K.
,
Schlez, W.
,
Neubert, A.
,
Jensen, L. E.
,
Neckelmann, S.
DOI: 10.1175/2010JTECHA1398.1Publisher: American Meteorological Society
Abstract: There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms. Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high variability in the data despite careful data screening. A number of ensemble averages are simulated with a range of wind farm and computational fluid dynamics models and compared to observed wake losses. All models were able to capture wake width to some degree, and some models also captured the decrease of power output moving through the wind farm. Root-mean-square errors indicate a generally better model performance for higher wind speeds (10 rather than 6 m s?1) and for direct down the row flow than for oblique angles. Despite this progress, wake modeling of large wind farms is still subject to an unacceptably high degree of uncertainty.
|
Collections
Show full item record
contributor author | Barthelmie, R. J. | |
contributor author | Pryor, S. C. | |
contributor author | Frandsen, S. T. | |
contributor author | Hansen, K. S. | |
contributor author | Schepers, J. G. | |
contributor author | Rados, K. | |
contributor author | Schlez, W. | |
contributor author | Neubert, A. | |
contributor author | Jensen, L. E. | |
contributor author | Neckelmann, S. | |
date accessioned | 2017-06-09T16:37:14Z | |
date available | 2017-06-09T16:37:14Z | |
date copyright | 2010/08/01 | |
date issued | 2010 | |
identifier issn | 0739-0572 | |
identifier other | ams-71071.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4212922 | |
description abstract | There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms. Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high variability in the data despite careful data screening. A number of ensemble averages are simulated with a range of wind farm and computational fluid dynamics models and compared to observed wake losses. All models were able to capture wake width to some degree, and some models also captured the decrease of power output moving through the wind farm. Root-mean-square errors indicate a generally better model performance for higher wind speeds (10 rather than 6 m s?1) and for direct down the row flow than for oblique angles. Despite this progress, wake modeling of large wind farms is still subject to an unacceptably high degree of uncertainty. | |
publisher | American Meteorological Society | |
title | Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms | |
type | Journal Paper | |
journal volume | 27 | |
journal issue | 8 | |
journal title | Journal of Atmospheric and Oceanic Technology | |
identifier doi | 10.1175/2010JTECHA1398.1 | |
journal fristpage | 1302 | |
journal lastpage | 1317 | |
tree | Journal of Atmospheric and Oceanic Technology:;2010:;volume( 027 ):;issue: 008 | |
contenttype | Fulltext |