YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time-Dependent Adjustment in a Simple Model of the Mid-Depth Meridional Overturning Cell

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005::page 1009
    Author:
    Samelson, R. M.
    DOI: 10.1175/2010JPO4562.1
    Publisher: American Meteorological Society
    Abstract: recently proposed reduced-gravity model of the warm-water branch of the middepth meridional overturning circulation in a rectangular basin with a circumpolar connection is extended to include time dependence. The model describes the balance between gain of warm water through northward Ekman advection across the circumpolar current, loss of warm water through eddy fluxes southward across the current, net gain or loss of warm water through diabatic processes north of the current, and changes in the thickness of the warm-water layer. The steady solutions are the same as those found previously, when the previous parameterization of diabatic fluxes is used. Time-dependent solutions are considered for the approach of the solution to a new equilibrium when the forcing or parameters are abruptly changed and then held fixed. An initial adjustment occurs through a combination of boundary and equatorial adjustment, followed by planetary wave propagation. The longer-term adjustment to equilibrium consists primarily of the slow change in eastern boundary thickness of the warm layer, which controls the mean depth of the entire layer. An approximate analytical solution of the time-dependent equations yields an explicit expression for the intrinsic time scale of the long-term adjustment, which depends on the eddy and diabatic flux parameters and on the equilibrium solution toward which the time-dependent solution adjusts. Numerical solutions are also considered with a second, advective?diffusive diabatic flux parameterization. These solutions differ quantitatively but not qualitatively from those with the original parameterization. For the range of parameter values considered, the adjustment time scale has dimensional values of several decades to more than a century, but the meridional flux of warm water may respond to changes in external parameters or forcing much more rapidly than this time scale for equilibration of the eastern boundary thickness and thermocline structure.
    • Download: (1.013Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time-Dependent Adjustment in a Simple Model of the Mid-Depth Meridional Overturning Cell

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212887
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSamelson, R. M.
    date accessioned2017-06-09T16:37:08Z
    date available2017-06-09T16:37:08Z
    date copyright2011/05/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-71039.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212887
    description abstractrecently proposed reduced-gravity model of the warm-water branch of the middepth meridional overturning circulation in a rectangular basin with a circumpolar connection is extended to include time dependence. The model describes the balance between gain of warm water through northward Ekman advection across the circumpolar current, loss of warm water through eddy fluxes southward across the current, net gain or loss of warm water through diabatic processes north of the current, and changes in the thickness of the warm-water layer. The steady solutions are the same as those found previously, when the previous parameterization of diabatic fluxes is used. Time-dependent solutions are considered for the approach of the solution to a new equilibrium when the forcing or parameters are abruptly changed and then held fixed. An initial adjustment occurs through a combination of boundary and equatorial adjustment, followed by planetary wave propagation. The longer-term adjustment to equilibrium consists primarily of the slow change in eastern boundary thickness of the warm layer, which controls the mean depth of the entire layer. An approximate analytical solution of the time-dependent equations yields an explicit expression for the intrinsic time scale of the long-term adjustment, which depends on the eddy and diabatic flux parameters and on the equilibrium solution toward which the time-dependent solution adjusts. Numerical solutions are also considered with a second, advective?diffusive diabatic flux parameterization. These solutions differ quantitatively but not qualitatively from those with the original parameterization. For the range of parameter values considered, the adjustment time scale has dimensional values of several decades to more than a century, but the meridional flux of warm water may respond to changes in external parameters or forcing much more rapidly than this time scale for equilibration of the eastern boundary thickness and thermocline structure.
    publisherAmerican Meteorological Society
    titleTime-Dependent Adjustment in a Simple Model of the Mid-Depth Meridional Overturning Cell
    typeJournal Paper
    journal volume41
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4562.1
    journal fristpage1009
    journal lastpage1025
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian