YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Theory of Deep Stratification and Overturning Circulation in the Ocean

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 003::page 485
    Author:
    Nikurashin, Maxim
    ,
    Vallis, Geoffrey
    DOI: 10.1175/2010JPO4529.1
    Publisher: American Meteorological Society
    Abstract: A simple theoretical model of the deep stratification and meridional overturning circulation in an idealized single-basin ocean with a circumpolar channel is presented. The theory includes the effects of wind, eddies, and diapycnal mixing; predicts the deep stratification in terms of the surface forcing and other problem parameters; makes no assumption of zero residual circulation; and consistently accounts for the interaction between the circumpolar channel and the rest of the ocean. The theory shows that dynamics of the overturning circulation can be characterized by two limiting regimes, corresponding to weak and strong diapycnal mixing. The transition between the two regimes is described by a nondimensional number characterizing the strength of the diffusion-driven compared to the wind-driven overturning circulation. In the limit of weak diapycnal mixing, deep stratification throughout the ocean is produced by the effects of wind and eddies in a circumpolar channel and maintained even in the limit of vanishing diapycnal diffusivity and in a flat-bottomed ocean. The overturning circulation across the deep stratification is driven by the diapycnal mixing in the basin away from the channel but is sensitive, through changes in stratification, to the wind and eddies in the channel. In the limit of strong diapycnal mixing, deep stratification is primarily set by eddies in the channel and diapycnal mixing in the basin away from the channel, with the wind over the circumpolar channel playing a secondary role. Analytical solutions for the deep stratification and overturning circulation in the limit of weak diapycnal mixing and numerical solutions that span the regimes of weak to strong diapycnal mixing are presented. The theory is tested with a coarse-resolution ocean general circulation model configured in an idealized geometry. A series of experiments performed to examine the sensitivity of the deep stratification and the overturning circulation to variations in wind stress and diapycnal mixing compare well with predictions from the theory.
    • Download: (1.552Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Theory of Deep Stratification and Overturning Circulation in the Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212878
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorNikurashin, Maxim
    contributor authorVallis, Geoffrey
    date accessioned2017-06-09T16:37:06Z
    date available2017-06-09T16:37:06Z
    date copyright2011/03/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-71031.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212878
    description abstractA simple theoretical model of the deep stratification and meridional overturning circulation in an idealized single-basin ocean with a circumpolar channel is presented. The theory includes the effects of wind, eddies, and diapycnal mixing; predicts the deep stratification in terms of the surface forcing and other problem parameters; makes no assumption of zero residual circulation; and consistently accounts for the interaction between the circumpolar channel and the rest of the ocean. The theory shows that dynamics of the overturning circulation can be characterized by two limiting regimes, corresponding to weak and strong diapycnal mixing. The transition between the two regimes is described by a nondimensional number characterizing the strength of the diffusion-driven compared to the wind-driven overturning circulation. In the limit of weak diapycnal mixing, deep stratification throughout the ocean is produced by the effects of wind and eddies in a circumpolar channel and maintained even in the limit of vanishing diapycnal diffusivity and in a flat-bottomed ocean. The overturning circulation across the deep stratification is driven by the diapycnal mixing in the basin away from the channel but is sensitive, through changes in stratification, to the wind and eddies in the channel. In the limit of strong diapycnal mixing, deep stratification is primarily set by eddies in the channel and diapycnal mixing in the basin away from the channel, with the wind over the circumpolar channel playing a secondary role. Analytical solutions for the deep stratification and overturning circulation in the limit of weak diapycnal mixing and numerical solutions that span the regimes of weak to strong diapycnal mixing are presented. The theory is tested with a coarse-resolution ocean general circulation model configured in an idealized geometry. A series of experiments performed to examine the sensitivity of the deep stratification and the overturning circulation to variations in wind stress and diapycnal mixing compare well with predictions from the theory.
    publisherAmerican Meteorological Society
    titleA Theory of Deep Stratification and Overturning Circulation in the Ocean
    typeJournal Paper
    journal volume41
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4529.1
    journal fristpage485
    journal lastpage502
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian