YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis

    Source: Journal of Physical Oceanography:;2010:;Volume( 041 ):;issue: 003::page 601
    Author:
    McWilliams, James C.
    ,
    Molemaker, M. Jeroen
    DOI: 10.1175/2010JPO4493.1
    Publisher: American Meteorological Society
    Abstract: In a large-scale deformation flow, lateral and vertical buoyancy gradients sharpen through baroclinic frontogenesis near the surface boundary. A ?thermally direct? ageostrophic secondary circulation cell arises during frontogenesis to maintain geostrophic, hydrostatic (thermal wind) momentum balance for the alongfront flow. Unstable three-dimensional fluctuations can grow during frontogenesis by baroclinic instability of the alongfront shear flow that converts frontal potential energy to fluctuation energy. At finite amplitude, the fluctuations provide alongfront-averaged eddy momentum and buoyancy fluxes that arrest the frontal sharpening even while the deformation flow persists. The frontal ageostrophic secondary circulation reverses to become a ?thermally indirect? cell in the center of the front. This allows an approximate opposition between ageostrophic advection and eddy-flux divergence in the frontal buoyancy gradient variance (i.e., frontal strength) balance equation, implying frontal equilibration. During the approximately equilibrated phase, the energy exchange rates among the deformation flow, front, and fluctuations are all reduced in comparison with a solution without eddy-flux feedback on the frontal evolution. The mean stratification is enhanced by both frontogenesis and eddy vertical buoyancy flux. The thermally indirect secondary circulation arises from eddy fluxes acting to force a departure in thermal-wind balance for the alongfront flow, overwhelming the single-cell thermally direct circulation induced by the deformation flow. The equilibrated thermal-wind imbalance in the frontal flow is appreciable, and its magnitude is set by the cross-front eddy flux of alongfront vorticity. This demonstrates an essentially inviscid, baroclinic, dynamical process for frontogenetic arrest through frontal instability.
    • Download: (1.824Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212864
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMcWilliams, James C.
    contributor authorMolemaker, M. Jeroen
    date accessioned2017-06-09T16:37:03Z
    date available2017-06-09T16:37:03Z
    date copyright2011/03/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-71018.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212864
    description abstractIn a large-scale deformation flow, lateral and vertical buoyancy gradients sharpen through baroclinic frontogenesis near the surface boundary. A ?thermally direct? ageostrophic secondary circulation cell arises during frontogenesis to maintain geostrophic, hydrostatic (thermal wind) momentum balance for the alongfront flow. Unstable three-dimensional fluctuations can grow during frontogenesis by baroclinic instability of the alongfront shear flow that converts frontal potential energy to fluctuation energy. At finite amplitude, the fluctuations provide alongfront-averaged eddy momentum and buoyancy fluxes that arrest the frontal sharpening even while the deformation flow persists. The frontal ageostrophic secondary circulation reverses to become a ?thermally indirect? cell in the center of the front. This allows an approximate opposition between ageostrophic advection and eddy-flux divergence in the frontal buoyancy gradient variance (i.e., frontal strength) balance equation, implying frontal equilibration. During the approximately equilibrated phase, the energy exchange rates among the deformation flow, front, and fluctuations are all reduced in comparison with a solution without eddy-flux feedback on the frontal evolution. The mean stratification is enhanced by both frontogenesis and eddy vertical buoyancy flux. The thermally indirect secondary circulation arises from eddy fluxes acting to force a departure in thermal-wind balance for the alongfront flow, overwhelming the single-cell thermally direct circulation induced by the deformation flow. The equilibrated thermal-wind imbalance in the frontal flow is appreciable, and its magnitude is set by the cross-front eddy flux of alongfront vorticity. This demonstrates an essentially inviscid, baroclinic, dynamical process for frontogenetic arrest through frontal instability.
    publisherAmerican Meteorological Society
    titleBaroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis
    typeJournal Paper
    journal volume41
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4493.1
    journal fristpage601
    journal lastpage619
    treeJournal of Physical Oceanography:;2010:;Volume( 041 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian