YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hysteresis and Dynamics of a Western Boundary Current Flowing by a Gap Forced by Impingement of Mesoscale Eddies

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005::page 878
    Author:
    Yuan, Dongliang
    ,
    Wang, Zheng
    DOI: 10.1175/2010JPO4489.1
    Publisher: American Meteorological Society
    Abstract: ysteresis of a western boundary current (WBC) flowing by a wide gap of a western boundary and the dynamics of the WBC variations associated with the impingement of mesoscale eddies from the eastern side of the gap are studied using a 1.5-layer reduced-gravity quasigeostrophic ocean model. The study focuses on two issues not covered by existing studies: the effects of finite baroclinic deformation radii and time dependence perturbed by mesoscale eddies. The results of the study show that the hysteresis of the WBC of finite baroclinic deformation radii is not controlled by multiple steady-state balances of the quasigeostrophic vorticity equation. Instead, the hysteresis is controlled by the periodic penetrating and the leaping regimes of the vorticity balance. The regime of the vorticity balance inside the gap is dependent on the history of the WBC evolution, which gives rise to the hysteresis of the WBC path. Numerical experiments have shown that the parameter domain of the hysteresis is not sensitive to the baroclinic deformation radius. However, the domain of the periodic solution, which is determined by the lower Hopf bifurcation of the nonlinear system, is found to be sensitive to the magnitude of the baroclinic deformation radius. The lower Hopf bifurcation from steady penetration to periodic penetration is found to occur at lower Reynolds numbers for larger deformation radii. In general, the lower Hopf bifurcation stays outside the hysteresis domain of the Reynolds number. However, for very small deformation radii, the lower Hopf bifurcation falls inside the hysteresis domain, which results in the transition from the leaping to the penetrating regimes of the WBC to skip the periodic regime and hence the disappearance of the upper Hopf bifurcation.Mesoscale eddies approaching the gap from the eastern basin are found to have significant impact on the WBC path inside the gap when the WBC is at a critical state along the hysteresis loop. Cyclonic (anticyclonic) eddies play the role of reducing (enhancing) the inertial advection of vorticity in the vicinity of the gap so that transitions of the WBC path from the leaping (periodic penetrating) to the periodic penetrating (leaping) regimes are induced. In addition, cyclonic eddies are able to induce transitions of the WBC from the periodic penetrating to the leaping regimes through enhancing the meridional advection by its right fling. The transitions are irreversible because of the nonlinear hysteresis and are found to be sensitive to the strength, size, and approaching path of the eddy.
    • Download: (1.614Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hysteresis and Dynamics of a Western Boundary Current Flowing by a Gap Forced by Impingement of Mesoscale Eddies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212862
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYuan, Dongliang
    contributor authorWang, Zheng
    date accessioned2017-06-09T16:37:03Z
    date available2017-06-09T16:37:03Z
    date copyright2011/05/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-71016.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212862
    description abstractysteresis of a western boundary current (WBC) flowing by a wide gap of a western boundary and the dynamics of the WBC variations associated with the impingement of mesoscale eddies from the eastern side of the gap are studied using a 1.5-layer reduced-gravity quasigeostrophic ocean model. The study focuses on two issues not covered by existing studies: the effects of finite baroclinic deformation radii and time dependence perturbed by mesoscale eddies. The results of the study show that the hysteresis of the WBC of finite baroclinic deformation radii is not controlled by multiple steady-state balances of the quasigeostrophic vorticity equation. Instead, the hysteresis is controlled by the periodic penetrating and the leaping regimes of the vorticity balance. The regime of the vorticity balance inside the gap is dependent on the history of the WBC evolution, which gives rise to the hysteresis of the WBC path. Numerical experiments have shown that the parameter domain of the hysteresis is not sensitive to the baroclinic deformation radius. However, the domain of the periodic solution, which is determined by the lower Hopf bifurcation of the nonlinear system, is found to be sensitive to the magnitude of the baroclinic deformation radius. The lower Hopf bifurcation from steady penetration to periodic penetration is found to occur at lower Reynolds numbers for larger deformation radii. In general, the lower Hopf bifurcation stays outside the hysteresis domain of the Reynolds number. However, for very small deformation radii, the lower Hopf bifurcation falls inside the hysteresis domain, which results in the transition from the leaping to the penetrating regimes of the WBC to skip the periodic regime and hence the disappearance of the upper Hopf bifurcation.Mesoscale eddies approaching the gap from the eastern basin are found to have significant impact on the WBC path inside the gap when the WBC is at a critical state along the hysteresis loop. Cyclonic (anticyclonic) eddies play the role of reducing (enhancing) the inertial advection of vorticity in the vicinity of the gap so that transitions of the WBC path from the leaping (periodic penetrating) to the periodic penetrating (leaping) regimes are induced. In addition, cyclonic eddies are able to induce transitions of the WBC from the periodic penetrating to the leaping regimes through enhancing the meridional advection by its right fling. The transitions are irreversible because of the nonlinear hysteresis and are found to be sensitive to the strength, size, and approaching path of the eddy.
    publisherAmerican Meteorological Society
    titleHysteresis and Dynamics of a Western Boundary Current Flowing by a Gap Forced by Impingement of Mesoscale Eddies
    typeJournal Paper
    journal volume41
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4489.1
    journal fristpage878
    journal lastpage888
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian