YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Equilibrium Dynamics of the Benguela Current System

    Source: Journal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 009::page 1942
    Author:
    Veitch, Jennifer
    ,
    Penven, Pierrick
    ,
    Shillington, Frank
    DOI: 10.1175/2010JPO4382.1
    Publisher: American Meteorological Society
    Abstract: The Regional Ocean Modeling System (ROMS) is used to systematically investigate equilibrium conditions and seasonal variations of the Benguela system at a resolution of 9 km, including both the large-scale offshore flow regime and the economically and ecologically important coastal upwelling regime. A shelf-edge poleward flow exists in the northern Benguela region (i.e., north of ?28°S) and is driven primarily by the wind stress curl via the Sverdrup relation. As such, it is strongly seasonal and is most intense during spring and summer, when the wind stress curl is most negative. The poleward flow deepens as it moves southward; between ?25° and 27°S, much of it veers offshore because of the nature of the wind stress curl and its interaction with the northwestward path of the Benguela Current, which is influenced by alongshore topographical variations. The Benguela Current is driven by nonlinear interactions of passing Agulhas rings and eddies and does not have a striking seasonal signal. In the mean state, it is characterized by two streams. The more inshore stream is topographically controlled and follows the run of the shelf edge. The meandering nature of the offshore stream is a result of the preferential path of Agulhas rings. The model simulates all seven of the major upwelling cells within its domain. The three southernmost cells have the strongest seasonal signal and experience their greatest upwelling during spring and summer months, whereas the two northernmost cells have less seasonal variability but nevertheless have increased upwelling from autumn to spring (and least upwelling in summer), and the central Benguela upwelling cells experience year-round upwelling. The effect of topography on coastal upwelling was investigated by smoothing alongshore coastline and topography variations, which showed that, in all of the seven major upwelling cells, upwelling is enhanced on the downstream side of capes.
    • Download: (3.751Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Equilibrium Dynamics of the Benguela Current System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212793
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorVeitch, Jennifer
    contributor authorPenven, Pierrick
    contributor authorShillington, Frank
    date accessioned2017-06-09T16:36:53Z
    date available2017-06-09T16:36:53Z
    date copyright2010/09/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-70955.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212793
    description abstractThe Regional Ocean Modeling System (ROMS) is used to systematically investigate equilibrium conditions and seasonal variations of the Benguela system at a resolution of 9 km, including both the large-scale offshore flow regime and the economically and ecologically important coastal upwelling regime. A shelf-edge poleward flow exists in the northern Benguela region (i.e., north of ?28°S) and is driven primarily by the wind stress curl via the Sverdrup relation. As such, it is strongly seasonal and is most intense during spring and summer, when the wind stress curl is most negative. The poleward flow deepens as it moves southward; between ?25° and 27°S, much of it veers offshore because of the nature of the wind stress curl and its interaction with the northwestward path of the Benguela Current, which is influenced by alongshore topographical variations. The Benguela Current is driven by nonlinear interactions of passing Agulhas rings and eddies and does not have a striking seasonal signal. In the mean state, it is characterized by two streams. The more inshore stream is topographically controlled and follows the run of the shelf edge. The meandering nature of the offshore stream is a result of the preferential path of Agulhas rings. The model simulates all seven of the major upwelling cells within its domain. The three southernmost cells have the strongest seasonal signal and experience their greatest upwelling during spring and summer months, whereas the two northernmost cells have less seasonal variability but nevertheless have increased upwelling from autumn to spring (and least upwelling in summer), and the central Benguela upwelling cells experience year-round upwelling. The effect of topography on coastal upwelling was investigated by smoothing alongshore coastline and topography variations, which showed that, in all of the seven major upwelling cells, upwelling is enhanced on the downstream side of capes.
    publisherAmerican Meteorological Society
    titleModeling Equilibrium Dynamics of the Benguela Current System
    typeJournal Paper
    journal volume40
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4382.1
    journal fristpage1942
    journal lastpage1964
    treeJournal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian