YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Parameterization for Entrainment in Overflows

    Source: Journal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 008::page 1835
    Author:
    Cenedese, Claudia
    ,
    Adduce, Claudia
    DOI: 10.1175/2010JPO4374.1
    Publisher: American Meteorological Society
    Abstract: Dense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.
    • Download: (1.462Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Parameterization for Entrainment in Overflows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212787
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorCenedese, Claudia
    contributor authorAdduce, Claudia
    date accessioned2017-06-09T16:36:52Z
    date available2017-06-09T16:36:52Z
    date copyright2010/08/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-70950.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212787
    description abstractDense overflows entrain surrounding waters at specific locations, for example, sills and constrictions, but also along the descent over the continental slope. The amount of entrainment dictates the final properties of these overflows, and thus is of fundamental importance to the understanding of the formation of deep water masses. Even when resolving the overflows, coarse resolution global circulation and climate models cannot resolve the entrainment processes that are often parameterized. A new empirical parameterization is suggested, obtained using an oceanic and laboratory dataset, which includes two novel aspects. First, the parameterization depends on both the Froude number (Fr) and Reynolds number of the flow. Second, it takes into account subcritical (Fr < 1) entrainment. A weak, but nonzero, entrainment can change the final density and, consequently, the depth and location of important water masses in the open ocean. This is especially true when the dense current follows a long path over the slope in a subcritical regime, as observed in the southern Greenland Deep Western Boundary Current. A streamtube model employing this new parameterization gives results that are more consistent with previous laboratory and oceanographic observations than when a classical parameterization is used. Finally, the new parameterization predictions compare favorably to recent oceanographic measurements of entrainment and turbulent diapycnal mixing rates, using scaling arguments to relate the entrainment ratio to diapycnal diffusivities.
    publisherAmerican Meteorological Society
    titleA New Parameterization for Entrainment in Overflows
    typeJournal Paper
    journal volume40
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4374.1
    journal fristpage1835
    journal lastpage1850
    treeJournal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian